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Abstract

Virologists are not only interested in point mutations in a genome, but also in relationships between mutations. In this work,
we present a design study to support the discovery of correlated mutation events (called co-occurrences) in populations of viral
genomes. The key challenge is to identify potentially interesting pairs of events within the vast space of event combinations.
In our work, we identify analyst requirements and develop a prototype through a participatory process. The key ideas of our
approach are to use interest metrics to create dynamic filtering that guides the viewer to interesting and relevant correlations
of genome mutations, and to provide visual encodings designed to fit scientists’ mental map of the data, along with dynamic
filtering techniques. We demonstrate the strength of our approach in virology-situated case studies, and offer suggestions for

extending our strategy to other sequence-based domains.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Life and Medical Sciences]: Biology and Genetics—

1. Introduction

Many analytic activities involve understanding events in sequences.
Events may be significant points in time-series data, locations in
text documents, or positions along a genomic sequence. A wide va-
riety of techniques in the visual analytics literature focus on identi-
fying and interpreting events as sparse sets of interesting locations
in a sequence. However, the problem of identifying interesting pat-
terns of co-occurrence of observations relating events together is
much less studied. Examining co-occurrence requires considering
a much larger space than with individual events: rather than the
one-dimensional space of a sequence, co-occurrence must consider
the space of all pairwise relationships. Additionally, analysis must
consider incomplete data, as observations may not capture all pairs
of events.

In this paper, we present a design study for the problem of the
identification and analysis of co-occurrences of mutations within
DNA sequence data. In our design study we gather requirements,
determine an abstraction of the problem, formulate a strategy based
on prior research, evaluate prototypes, and arrive at a final visual-
ization design, driven by participatory design with our collabora-
tors. Through this process, we encountered issues of scale associ-
ated with displaying all potential correlations. A key idea in our
strategy is to define metrics for quantifying “interestingness,” af-
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fording a user-driven exploration of the space of correlations. While
our motivating application is the population dynamics of viruses
and correlation of mutations, we believe the lessons from this de-
sign study have broader applicability to discovering correlations in
other one-dimensional sequence data.

The specific biological question we consider involves the mu-
tation patterns that a virus makes over the course of its infection
in a specific host-individual. When a host is infected with a virus
such as HIV or influenza, the virus rapidly makes many copies of
itself. Because replication is imperfect, many of the copies of the
virus will contain multiple point mutations [S*10]. Some of these
variants are advantageous and accumulate within the virus popu-
lation (e.g., variants that evade the host’s immune response). New
deep sequencing technologies enable surveillance of viral genomes
throughout entire populations. While workflows currently exist for
identifying correlation between two genomic positions, the anal-
ysis process is a manual effort and prone to errors. Better analy-
sis tools and support are needed to rapidly identify significant co-
occurrences of mutations in genomes.

Our contribution is a design study (see Sedlmair et al. [SMM12])
of the rapid identification of correlations between mutations in pop-
ulations of a viral genome, where technology has become available
to understand the population dynamics of viruses. We provide a
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characterization and abstraction of the problem, allowing us to pro-
pose a solution for the generalized problem. We consider standard
encodings for sequence and correlation data, and explore their use
in an initial prototype. Through a participatory design, we recon-
cile failures in early prototypes and iterate on our design to better
match virologists’ needs. We assess this system through two case
studies, and end with a discussion of the lessons learned through
the problem characterization and the design study.

2. Biological Background

Our work is a part of an established collaboration between virol-
ogists and computer scientists to develop better tools for under-
standing the genetic mechanisms involved in viral infections. Team
members from both backgrounds have worked together to build
an understanding of problems, and have evolved tools that address
them. Here, we describe the general problem of understanding vi-
ral population dynamics and the need for new tools to examine co-
occurrence in this domain.

For the purposes of this paper, the key biological concept is
that the genome replication process of RNA viruses (e.g. HIV, in-
fluenza) is highly error-prone, resulting in the incorporation of ran-
dom mutations of nucleotides throughout the viral genome. In an
infected host, HIV and influenza exist as a diverse collection of
similar yet distinct viral particles, each with its own genome. While
most mutations in RNA viruses are catastrophic to the continued
survival of the virus, those mutations that are beneficial to viral
fitness continue to propagate. Generally, the longer a virus has in-
fected the host, the more variation in the viral population.

Identifying combinations of mutations (co-occurrences) in the
viral genome is critical for understanding important biological
functions. For example, simultaneous mutations at three or four po-
sitions on an external viral protein haemagglutinin (HA) of an avian
HS5N1 influenza virus permits transmission to mammals [I*12]. In-
terestingly, these mutations do not confer transmission individually,
but rather they need to exist together on the same viral genome
(a concept named epistasis). Epistatic mutations are co-occurring
mutations that, together, can allow a new biological function. Iden-
tifying co-occurring mutations from virus populations allows for
detailed characterization of genetic diversity and accurate assess-
ments of viral function. A global view of co-occurrence can help
understanding of how a virus works at a high-level, and serves to
target in vivo experimentation of viral activity of larger epistatic
interaction.

Nucleotides that mutate can cause the functionality of a virus to
change by affecting emitted proteins. Regions of the genome that
code for proteins are called open reading frames (ORFs), where
a reading frame is a particular sequence of codons, which them-
selves are triplets of nucleotides. The translation from codons to
amino acids (the building blocks of proteins) is degenerate as there
are 64 unique codons (4%) and just 20 amino acids that can be rep-
resented by the genetic code. Therefore, a mutation in the genome
does not necessarily confer a change in protein coding—these are
instances of synonymous mutations. Identifying these synomymous
mutations as not significant mutations are important to consider
(though even synonymous mutations may have RNA structure—
and thereby functional—implications).
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Figure 1: A visual abstraction of viral genomic data, where red
boxes denote nucleotides that do not match the reference genome.
Rows are individual reads from NGS, while columns are ge-
nomic positions. Two positions (i, j) are checked for mutation co-
occurrence.

The rapid identification of epistasis and characterizing the func-
tionality of sub-populations remains a challenging task. New ge-
nomic sequencing technology allows for analysis of the diverse ge-
nomic populations and continued disease progression. In particular,
Next-Generation Sequencing (NGS) analyzes millions of nucleic
acid sequences simultaneously, enabling detailed characterization
that captures the proportional presence of viral sub-populations in
a sample. The output of the NGS system are aligned sequences of
short-read data—see Figure 1 for an abstract representation. These
reads (on the order of hundreds of thousands) have associated start
points in the global genomic sequence space. Due to limitations
in current technology, however, only 300-500 nucleotides can be
called for each read, limiting the range of co-occurrences that can
be observed in pairwise genomic space. Newer techniques, such
as including analysis from “paired reads,” can increase this band-
width, but still represents a hard limit on analyzing distant pairs in
the genome.

3. Problem Details and Requirements

The process of discovering these co-occurrences of mutations in vi-
ral populations is not well-supported by any existing tool. Current
workflows for discovering sub-populations demand either expen-
sive processes examining all potential combinations, manual cura-
tion and exploration through the data using tools such as Microsoft
Excel, or line-by-line inspection of aligned reads in programs such
as Geneious Pro [K*12], CLC Genomics Workbench [CLC], or the
Integrated Genome Viewer [R*11].

Our discussions with virologists identified two main analysis
goals. The first is an idea of diversity: a better understanding of the
amount of variation in sequence space. For example, higher vari-
ation within a population could indicate there are environmental
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pressures (e.g. an effective immune response) that is forcing the
virus to diversify to survive. The second insight regards function-
ality, where the population of viruses can be separated into sub-
populations that share coordinated mutations. This separation can
provide researchers with a vector of attack to characterize the viral
sub-population in vivo to see if a functionality shift is occurring.

The general problem is to identify pairs of genomic positions
where mutations are observed to co-occur together. If we think of
the reads (rows in Fig. 1) as observers making measurements about
events in a global context (columns in Fig. 1), we can begin to de-
termine how these observers connect these events. To understand
the correlation of events, we can gather statistics from pairs of po-
sitions that are observed together—we call this observer continu-
ity. In contrast, looking at observations without regard of observer
continuity reduces to an independent event comparison problem,
which is supported by existing visual analysis techniques for time-
series data (¢f: [JME10]) or existing metrics (such as mutual infor-
mation [S*02]).

From this problem characterization, and through iteration and
discussion with our collaborators (see §6.1), we collected a se-
ries of analysis tasks. The first (T1) is to identify significant co-
occurrences of mutations. Virologists must be able to explore in
detail a co-occurrence pair (T2), evaluating whether the particu-
lar correlation is important and requires further research. Important
co-occurrences within the entire genome must be easily summa-
rized (T3), requiring overview of all significant correlations in the
genome.

We collected additional requirements based on the specific task
domain. The presentation of the data in the visualization must align
with the analysts’ existing mental models of genomic data by (1)
always presenting data in genomic sequence order (R1) and (2) dis-
playing annotations alongside the genome to provide wayfinding
for the analyst (R2). We found through discussions with virologists
that a mental ‘map’ helped to orient themselves while navigating
the viral genome. To be able to discover significant co-occurrences,
there needs to be a scaffold to navigate the space of all pairwise
correlations (R3). Finally, the visualization must scale to the typi-
cal dataset size (R4): hundreds of genome positions and hundreds
of thousands of individual read segments, while remaining inter-
active to the anaylst in a web-browser-based deployment (which
simplifies sharing of datasets).

Our approach to deal with the vast space of correlations is to
define interest metrics to aid in filtering. Discussions with stake-
holders suggested that there are a variety of factors to consider in
developing such metrics. The simplest of these measures is posi-
tive correlation, which can indicate potential epistatic mutations.
The inverse, negative correlation, can also be interesting, demon-
strating that combinations of mutations can be catastrophic to viral
fitness. Secondly, there may be issues with coverage, where there
may not be enough observations relating two positions to make sig-
nificant judgments about correlation. Finally, the base rate of muta-
tions at a particular position must be over the error rate of the NGS
sequencer to be significant, otherwise spurious correlations that are
misaligned may be counted as significant. We elaborate on these
metrics in Section 5.
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4. Related Work
4.1. Visualizing genomic data

There are many genomic data viewers that support the visualiza-
tion and analysis of variants (see Nielsen ef al. [N*10] for a broad
survey). The most common of these analysis tools are genome
browsers, which juxtapose the raw genomic sequence alongside
supplemental data, such as computational predictions and homolo-
gies. There are many examples of these tools, each of which are
specific either to a particular task (e.g. resolving reads from NGS
data [F*10]) or a particular biological domain (e.g. cancer [D*12]
or humans [K*02]). Although there are many browsers, most make
assumptions that break our model of multiple, competing viral
genome populations. For example, the MuSiC system [D*12] con-
tains functionality that identifies statistically-probable correlations
of mutations [D*08]. In particular, the use of fixed statistical judg-
ments and sub-sampling methods are not well-suited to analysis of
a viral population, as it assumes that non-matching reads are errors
instead of an indication of a sub-population.

Specialized genomic visualizations can make visual encoding
decisions that directly support particular analysis tasks. These
systems either expose trends and relationships between annota-
tions [V*13], between variants and annotations [FNM13, D*13],
or between alternative splicing of genes [SAB*16]. Many of these
systems directly encode correlation. COMBat [V*13] uses a re-
orderable matrix view to highlight correlation between annotations,
intentionally scrambling the genomic axis. Variant View [FNM13]
uses tracks to show overlapping annotations, as well as concise
glyphs to convey information on types of mutations at particular
positions. DecisionFlow [GS14] allows the analyst to drive explo-
ration through a large electronic health record space and presents
health outcomes in Sankey-like diagrams, while Vials [SAB*16]
uses a common genomic axis to ground analysis of splice groups.
While some of these tools violate several of our initial requirements
(e.g. COMBat violates R1 and R2, Variant View doesn’t scale to
the data scales needed in this application R4), they provide prece-
dent for the visual support of our three tasks (T1-3).

Many solutions for analyzing viruses, like Alvira [EFBF07], use
a ‘scaffold view’ where sequencing reads are stacked atop one
another, mutations are highlighted, and frequency of variants is
highlighted by proportional sequence logos. These visual encod-
ings have notorious disadvantages, including inablility to scale and
and potentially skewing proportionality judgments (see Maguire et
al. [M*14] for a discussion), suggesting a more principled ensem-
ble encoding. Similar to our system, LayerCake [C*15] supports
finding variants between multiple aligned samples of populations
of viral genomes by using color as an ensemble encoding, com-
pressing horizontal space by binning positions together but other-
wise maintaining strict sequence order. LayerCake highlights pop-
ulation dynamics only between viral samples, not within a partic-
ular sample. Therefore, LayerCake does not support discovering
correlations between mutations as there is no notion of observer
continuity.

4.2. Visualizing correlation

Visualizing correlation between events is a task of substantial in-
terest in the visual analytics literature. Two primary methods of
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visualizing relationships between elements are through node-link
and matrix-based visualizations (see Ghoniem et al. [GFC04] for
a discussion). While node-link visualizations have issues of scale
with increasing number of nodes, they are invaluable for analyzing
multi-stage connections. On the other hand, matrices excel at larger
number of connections, though they suffer at providing aggregate
judgments (cf. Diaz et al. [DPS02]).

Several studies have modified the typical uses of node-link and
matrix-based visualizations to uncover trends in combinatorial re-
lationships. Henry and Fekete [HF06] use a matrix view in con-
junction with a node-link view to better support analysis tasks of
social network connections between individuals. Dunne and Shnei-
derman [DS13] use aggregate glyphs to represent common visual
patterns in node-link diagrams, managing complexity in the num-
ber of elements and connections shown. Other visual methods such
as parallel sets [BKHOS5], parallel coordinates [Ins97], and Sankey
diagrams show how similar elements relate to one another through
many continuous or categorical dimensions. These methods are
helpful for conveying a general sense of how a subset interacts with
different data dimensions, and we use parallel sets to visually com-
municate the level of correlation in a co-occurrence pair.

We use general trends found in these works to inform our own
design decisions. For example, we anticipated in early designs that
a matrix view would be a good way to re-order positions to identify
significant co-occurrences. This led us to the requirement of main-
taining genome continuity (R2) in order to support the virologists’
mental models, upon which we elaborate in Section 6.

5. Interest Metrics

To reduce the correlation space that an analyst needs to explore,
we identified the following three metrics that capture the intuitions
of our audience for what is considered an “interesting” correla-
tion. The first is coverage: we must have a sufficient number of
the events in order to be confident that the measures we receive are
not due to sampling error or noise. The second is variation, where
each of the two sites must have a sufficient diversity of observa-
tions. The third is a metric of co-occurrence, which quantifies how
unlikely is the relationship between the two sites relative to chance,
given what would be expected by the statistics at each individual
position under an assumption of independence.

Abstractly, we consider the set of events E in a data sequence,
and observers O that make observations about those events. Each
observer Oy, therefore represents a set of observations of the form
{(i,4),---(j,—)}, where each tuple contains a reference to an
event in E (e.g. position i) and a categorical observation (e.g. +)—
for example, if a mutation is observed at this position or not (a tuple
is a square in Figure 1). Throughout our notation, we use Q as a
collector of observers that have made a given observation about an
event.

These metrics are summarizations of a co-occurrence pair, but do
not individually confer a clear indication of significance. In differ-
ent situations, an analyst may have different considerations. There-
fore, we allow the user to dynamically set thresholds for these met-
rics.

Coverage metric: The coverage metric C; for a particular position

i counts the number of observations made about a position and can
be used to determine coverage in comparison to other positions.
C; is computed by gathering all observers B € O that reference the
position i and counting the number of observations in the returned
set.

Ci=1Qu,)l ={B<€O](i,*) € B}|. M
We can extend this definition of Q to select sequences that have a

particular type of observation at a position. As an example, Q;_)
would match sequences that have observations at i that are negative.

Variation metric: The variation metric V; can be used to threshold
the prior probability for a variant to occur at a position. As an ex-
ample, V;_ below is the percentage of reads that are mutations at
position i in our genomics context:

1)l

V=P =g,

. 2)

Co-occurrence metric: Correlations that are interesting tend to be
those where observations regarding one position seem to be condi-
tionally dependent on the observation at another. To quantify this,
we first count the observers of both occurrences. We augment Q
again, capturing observations about a pair of positions, taking into
account observer continuity—that is, an observation is only consid-
ered if and only if it contains data about both i and j:

Qi_j,)=1B€O|(i,—) € BA(j,+) € B}.

Now, we can define a conditional probability. Let us assume that
we are interested in the conditional probability that an observation
is negative at position j given the negative observation at i:

196l
Pr(j_|i_)= M
1Q6i_ j)l

With these formulations, we can define a co-occurrence metric
M,'yj* .
Q)| Q)

Mi_j, :Pr(j,|i,)fPr(j,\i+): ‘Q( - )| - ‘Q( . >| '
]« L]+

3)

This metric is similar to metrics such as mutual information (see
Steuer et al. [S*02]). A key difference is that it takes account of ob-
server continuity, allowing us to use conditional probability in our
metric, in contrast to depending on joint probability (a potentially
weaker assertion). Our metric also yields values in a fixed domain
[—1,1], where —1 identifies strong negative correlation, 1 denotes
strong positive correlation, and 0 implies no correlation. This is in
contrast to mutual information, which has an unbounded, unsigned
domain.

5.1. Interestingness in the virology problem

With Next-Generation Sequencing technology, researchers have
the ability to understand the population dynamics of highly varying
samples of viruses without the limitations of previous sequencing
technology that would implicitly boost only the sequences with the
highest occurrence. In engineering our solution, we decided to im-
plement a pre-computation process that would compile counts of
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Figure 2: Our initial prototype to identify pairwise correlations
between all positions i (x-axis) and j (y-axis). The matrix view (a)
shows these co-occurences, and the overview (b) provides a hori-
zontal overview of the space. The super-zoom window (c) highlights
the coordinates and co-occurrence metric currently under the cur-
sor, while the bar chart (d) presents the proportion of reads at a
selected pair of positions. The legend (e) presents the 2D color key.

paired bases (all paired combinations of Q). With these precom-
puted counts, a front-end visualization permits interactive tuning of
interest metrics. To determine mutations at nucleotide positions, we
compare the collected data against a reference genome sequence.
As our overall goal is to find co-occurrences of mutations, we de-
emphasize the common case of reference-to-reference correlation,
as this indicates the lack of any sort of epistatic functonality.

6. Visualization Design

Here we will describe our experience designing a visual analytics
solution for the given problem, first presenting our early prototype
(§6.1) using a matrix-based solution. The failure of this initial pro-
totype prompted us to derive task T3 (supporting overview), and re-
quirements R2 and R3 (wayfinding and tunable filter parameters).
We describe the rationale for the designs, and some of our lessons
learned (§6.2) in incorporating implicit assumptions of the analyst
into requirements for the final design (§6.3).

6.1. Initial prototype: Matrix-based visualization

For our initial prototype, we developed a matrix-based technique
for looking at the correlations of mutations between pairs of po-
sitions (§4.2, see Figure 2). The design was inspired by previous
work that use matrices to communicate relations, which excel at
displaying large numbers of relationships in comparison to node-
link diagrams.

Each cell in the matrix communicate the level of mutation co-
occurrence (M; ;_) at a pair of positions 7 and j. We use a bi-variate
color ramp [Tru81] to communicate the co-occurrence metric (a
ColorBrewer red-to-blue diverging ramp [BHHO3]) and the cov-
erage (lightness attenuation in Lab color space), together identify-
ing significant co-occurrence. Details are available through a linked
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“super-zoom” panel, which displays the metrics for a 3 x 3 area un-
der the current mouse position. A bar chart (below) compares the
mutations and reference reads at the two positions, and allows for
conditioning on the nucleotide type.

We took advantage of the technological limitations of NGS,
where direct correlations are limited to a window in the low hun-
dreds of positions (the maximum read length). This produces a
banded matrix about the diagonal, so we thereby limit navigation of
the space to a one-dimensional diagonal pan and zoom to prevent
getting lost in the data space. To overcome the technical limita-
tion of loading millions of data points to the client and displaying
them in a web-based interface, we used WebGL to load the data
into buffers in the GPU and to render the matrix interface. Sup-
plemental views such as the super-zoom were implemented using
the D3 library [BOH11]. Using the GPU for rendering allowed for
real-time navigation of a 20,000 x 20,000 cell-space, as well as
interactive updates by modifying uniform variables sent to shaders
(see [MEO9] for a discussion).

6.2. Lessons learned from the matrix-based prototype

This early implementation had several problems in practice for ex-
ploring NGS data. The visualization was overwhelmed by many
false positive results at nearly every pair of positions—many co-
occurrence pairs had a saturated color (see Figure 2) but were not
significant in practice. Through iteration on this design with stake-
holders and a root-cause analysis, we found that although the co-
occurrence metric was high in magnitude, the overall proportions
of variant reads at those positions were very small (on the order of
1-5%), even though they had very high correlation to other posi-
tions. Many of these reads were determined to be misaligned reads
by the sequencer. In additional, simultaneously visualizing a third
metric (variation) requires a tri-variate color map, which are con-
sidered to be impractical [War(09]. These constraints suggests an
alternative method to filter out task-irrelevant co-occurrences (R3).

In order to assist analysts in identifying pairs of positions with
significant co-occurrences, we added in a filtering gate to remove
co-occurrence pairs where at least one position meets a minimum
variant probability. This filtering made the data too sparse in the
matrix to identify interesting co-occurrences, suggesting task T3:
providing overview.

While matrix re-ordering could help to emphasize correlation
between positions, reordering the genomic sequence prevents an-
alysts from leveraging their knowledge of particular sections of the
genome, such as critical gene-coding regions. A requirement (R2)
that emerged from discussion with collaborators was to provide a
mechanism that exposed annotations, or interval identifers of the
genome that provide a wayfinding mechanism. They stressed that
annotations can provide information on reading frames or identi-
fying regions of interest. The overall difficulty of discovering in-
teresting co-occurrences within the matrix view suggests a guided,
interactive approach that does not embed relationships within the
full data space.
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Figure 3: A close-up of a co-occurrence summary between two po-
sitions (counts included for explanation). The positions being com-
pared are mapped to rectangles, with both reference (green) and
variant (red) nucleotide types. The links show the correlated pro-
portion of reads between the two positions. The gray arcs represent
the proportion of reads that overlap one position but not the other.

6.3. CooccurViewer visualization

Our experience with the first prototype lead to a second design with
revised tasks and requirements to support it (§3). Based on feed-
back from analysts and brainstorming potential solutions within
our team and other virologists, we elected to modify our strategy
to be driven by analyst focus (see Shneiderman and Plaisant for a
discussion [SP15]). To achieve this, we integrated our three tasks
directly into the design (see Figure 4): a one-dimensional map that
forms the overview and designates positions where interesting co-
occurrence is happening (T3), metrics with which to filter the space
of correlations (T1), and a detail view that describes the correlation
between pairs of positions with explicit metrics (T2).

6.3.1. Overview

To support user-driven exploration of significant co-occurrence of
mutations, we brought filtering to the forefront of the analysis. The
virologist has the option to tune parameters of significance (§5),
and only those correlations that meet the analyst-defined standards
are displayed. The overview of these significant co-occurrences ap-
pears at the top of the visualization. Each position displayed has
at least one significant co-occurrence with another position. These
single positions are connected to their positions on the genomic se-
quence by gray wedges and are clustered together based on their
proximity in genomic space. The overview can support up to 500
positions, but becomes more comfortable with less than 75 individ-
ual positions. Virologists using our tool to explore co-occurrences
tended to tune the metrics until about 50 positions were visible in
the overview.

The CoocurViewer overview includes a linear representation of
the genome with annotation data. These annotations are represented
by the colored bars above the genome axis (Figure 4(a)), and pro-

vide virologists with biological context for positions in the genome.
In particular, annotations marked as reading frames are used to de-
termine if mutations within the region are synonymous mutations.
Viewers are given the option of supressing synonymous mutations,
which treat those mutations as matching the reference genome. In
practice, we found that virologists would activate this option to re-
move synonymous mutations from display, but would also occas-
sionally deactivate the option to identify mutations that could still
have conformational implications.

Each position with significant co-occurrence is summarized by
the three metrics introduced in Section 5, each color-encoded us-
ing separate ramps: coverage (i.e., read depth, in green), the base
amount of variation at that position (in red), and the magnitude of
the co-occurrence metric (in purple). In order to summarize cor-
relations between multiple potential positions, the glyph at each
position shows the maximum value of each metric independently.
Sliders linked to these metrics (Figure 4(f)) allow the analyst to
modify thresholds to filter out less interesting co-occurrences.

6.3.2. Co-occurrence Details

Once the virologist has selected a particular position of interest,
the main view populates matching co-occurrences with that posi-
tion. Through collaborative design, we developed a design to show
“flow” between nucleotide types at two positions, similar to a ver-
sion of parallel sets [BKHOS] (see Figure 3). The connecting arcs
show the proportion of reads (observations) that are one type at po-
sition i and are either the same or opposite type at position j. The
gray arcs represent observations that exist at that position, but do
not overlap the paired position. Tooltips can present more details
on demand such as the number and proportion of nucleotide ob-
servations, including whether a particular nucleotide is potentially
synonymous. For reasons of screen-space, only two pairs of co-
occurrence detail can be shown at once, though all correlations for
the current position are shown in a small-multiple display (see Fig-
ure 4(e)) and can be brought into full view by selection or through
pagination.

6.4. Implementation

CooccurViewer is a system implemented in JavaScript, using the
D3 library [BOH11] to map data to shapes on an SVG canvas. We
use a pre-processing step to gather the 4 x 4 contingency tables
(nucleotides at each position pair) from SAM files (short sequence
read alignments) [L*09] by comparing reads to a given reference
sequence and counting paired combinations of bases for each pair
of positions. We also compute the co-occurrence metric from these
counts (see §5) and compile other data such as annotations. These
data are packed into the binary files that are served to the visualiza-
tion. This allows for minimal transport over the network, and the
client-side nature of the visualization entails near-interactive rates
for filtering the data shown to the viewer. CooccurViewer and the
pre-processing library are open-sourced on GitHub and available at
http://graphics.cs.wisc.edu/Vis/CooccurViewer/.

7. Case Studies

We present two case studies to demonstrate the utility of our vi-
sualization prototype. Through these examples, we illustrate how
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Figure 4: An overall view of SIV (§7.2) loaded into CooccurViewer. Annotations (a) denote regions of the genome that have some biological
context, and the overview (b) denotes positions of significant co-occurrence, summarizing the three metrics (§5) using color. The correlation
diagrams (c) provide a representation of correlation between pairs of positions, and some details (d) about metric values. The current
position’s summary of correlations (e) is given on the left, with small-multiple representations. The sliders (f) control the thresholds for the
interest metrics and filters the co-occurrences shown in the visualization.

the visualization can expose significant correlation information. We
show how the system is robust to displaying populations of viral
genome samples in datasets of millions of pairwise correlations.
We also highlight how our visualization design can help reveal new
questions and insights about existing datasets. These studies are
from two different virology labs, and include virologists beyond
the authors of this paper.

7.1. Avian Influenza (H5N1)

In our first case study, different variants of the HSN1 influenza virus
are explored. To understand the impact of within-host viral genetic
diversity on replication and transmission of avian influenza viruses,
Wilker and Dinis, ef al. [WD*13] used deep sequencing to assess
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genetic variation from inoculated ferrets and ferrets infected via
respiratory droplet transmission [I*12]. The authors reported that
sub-populations present at low frequencies (~ 6%) could transmit
via respiratory droplets. Interestingly, they showed that only one to
two combinations of co-occurring mutations in the hemagglutinin
(HA) gene were detectable early after infection in contact animals.
Taken together, this shows that selective forces imposed a signifi-
cant reduction in influenza genetic diversity during transmission.

We imported reference-based assemblies of the HA gene (1788
base pairs in length) from infected ferrets (six pairs, six samples
each) into our pre-processing library. On average, each reference-
based assembly contained 140k to 348k sequences (avg. 205k) and
individual reads were 100 to 160 base pairs in length (avg. 149).
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Figure 5: For this particular sample of an H5N1 viral population,
a strong inverse correlation is identified between mutations at 738
to non-variant reads at 728, as well as a inverse correlation be-
tween positions 728 and 788, validating the results presented by
the reference study [WD*13].

Annotations denote regions in the sequence that code for the pre-
processed HA protein (blue), a post-processed HA protein that be-
comes packaged in the viral envelope (orange), and a region on the
HA protein that binds to host-cell receptors (green). A single sam-
ple’s packaged data averages around 42MB.

There is a significant level of nucleotide variation near the
receptor-binding domain of H5N1 viruses infecting ferrets. In Fig-
ure 5, using sequence data from a directly inoculated ferret sam-
pled five days post-infection, there are a number of significant co-
occurrences. Virologists focuseed on two particular positions with
relatively higher amounts of nucleotide variability, where the sum-
mary glyphs are saturated red. Selecting position 728 (the farthest
left summary), a strong inverted correlation is found between non-
variant nucleotides at 728 and variants nucleotides at 788— this
relationship was identified in the original study.

Through the use of the visualization, potentially interesting co-
occurrences were readily identified. This is in contrast to the in-
tensive, manual workflow used to identify co-occurrences in the
original work [WD™13], which involved concatenation of all poly-
morphic sites and tabular exploration through these varying sites to
find potential correlation (taking several weeks). The visualization,
by contrast, specifically targets the analytical task of rapidly identi-
fying these interesting co-occurrences in the timescale of minutes.

7.2. Simian Immunodeficiency Virus (SIV)

SIV is a commonly-studied virus as an analog to HIV (human im-
munodeficiency virus). Variants accumulate during an HIV or SIV
infection confer resistance to antiretroviral drug treatment or ex-
pand the range of cells the virus can productively infect. Under-
standing epistatic interactions are critical to target antiretroviral
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Figure 6: In this SIV sample, a cluster of correlated mutations ap-
pears within the Nef protein (top-right, dark yellow bar), known to
harbor viral escape. Variants at positions 9,645 and 9,651 are in-
versely co-occurring with reference reads (mid-top), while reads at
positions 9,646 and 9,651 are positively correlated (mid-bottom).

treatments. The dataset shown in Figure 6 comes from a macaque
monkey 54 weeks after infection with a clonal, pathogenic strain
of SIV [0*12]. In this case, we know the exact sequence and com-
position of the viral sequence (9,973 base pairs) that initiated the
infection. The data contains 238k read segments, where each seg-
ment length is between 24 to 151 base pairs long (avg. 92). The
2.78 million pairwise count data and associated metadata is mini-
mized to 170MB.

Virologists immediately saw from the summary (see Figure 6)
that there is a high amount of variation in this particular SIV sam-
ple. Many of these significant correlations are inverse correlations,
identified by a strong absolute co-occurrence metric (purple). In
particular, virologists observed correlations in this dataset that may
merit additional follow-up. First, there are comparatively few cor-
related variants in the structural proteins of Gag and Pol (the blue
and orange regions stretching from positions 1309 to 5666). These
are HIV/SIV genes thought to be under the greatest constraints;
variation in these genes likely compromises the ability of the virus
to replicate. The lack of correlated variants in these genes com-
pared to the accessory and regulatory genes suggests that compen-
satory variants here are relatively infrequent. Second, they identi-
fied a cluster of correlated variants from nucleotides 9,609 to 9,660
that occurs within a known viral sub-population that is recognized
by macaque CD8+ T cells. While it is known that the virus can
evade detection by immune responses through mutations in this re-
gion, the virologists noted that examining the impact of correlated
variants within this epitope may resolve sub-structure to the escape
variant populations that would be missed with other analytic tools.
The ability to foster these global insights demonstrates a remark-
able improvement over virologists’ previous manual workflows.
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8. Discussion

Through this design study, we have learned several key lessons
that generalize from our domain problem. Respecting the analysts’
mental model of the anaylsis space and providing scaffolds for
wayfinding proved to be critical in our design. We use a conjunction
of multiple interest metrics to help narrow exploration in the large
pairwise space of all pairwise correlations. We have also shown
that combining multiple metrics through conjunction can help fo-
cus analysis when a single metric is insufficient.

In order to support analytical targeting for our design, we cap-
tured discrete components of significant correlations and generated
definitions of these components. We quickly discovered that there
was no one metric that captured if a co-occurrence between posi-
tions was significant or not, and elected to provide a mechanism
to allow the analyst to select relevant thresholds dynamically. This
interactive exploration affords analysis that can adapt to different
analysts and datasets.

In this work, we focused on the problem of discovering co-
occurrences of events within one sample of a population of viral
genomes, and have shown it to scale to a significant amount of data
(e.g. a viral genome 12k positions long with 250k reads leading
to a ceiling of nearly 3 million potential co-occurrences). Extend-
ing our work to the problem of multi-sample comparison is impor-
tant future work, though an independent problem. As an example,
longitudinal studies of virus mutation usually span multiple time-
points, sometimes under different environmental or transmission
conditions. While comparisons can be made implicitly between vi-
ral populations by switching the dataset shown in the visualization
from one genome to another, it can be difficult to make explicit
comparisons of correlation across samples.

The largest dataset we have supported thus far is the SIV dataset,
which encodes 2.78 million 4 x 4 contingency matrices of pairwise
correlations into our web-based visualization. We can scale to sup-
port the additional data of multi-level correlation (beyond pairwise
correlation) and comparison across multiple timepoints by load-
ing data directly to the GPU or offloading computation to a remote
server [MHH15]. Applying data management principles such as in-
dexing within the data (such as the imMens system [LJH13]) could
also increase data retrieval rates.

Finally, we have determined that our viral population dynam-
ics problem is an instance of the abstract problem of understand-
ing partially observed co-occurrences. This abstraction permits us
to convey statistics and trends of co-occurrence events in a visual
manner. The abstraction also allows us to generalize our work to
other domains such as large-scale text analysis and time-series data,
although our development of such applications is still in progress.

9. Conclusion

In this work, we have presented a design study for the rapid iden-
tification of correlated mutations in populations of a viral genome.
Through our characterization of the problem, we have identified
requirements that led to metrics used to focus analysis on signif-
icant co-occurrences. We have shared our experiences in creating
visualization prototypes to support our model task, demonstrated
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the effectiveness of our prototype design through our case studies,
and summarized the lessons we have learned through this work.
We hope to extend this work to higher-level correlations, and ap-
ply the lessons we have learned through this design study to other
sequence-based data domains.
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