
Using WebGL as an Interactive Visualization Medium:
Our Experience Developing SplatterJs

Alper Sarikaya, Student Member, IEEE and Michael Gleicher, Member, IEEE

Fig. 1. Our WebGL implementation of the Splatterplot technique [9], showing a subsample of five different sampled Gaussian distri-
butions (about 7.5k points per series). The web-based implementation allows for interactive exploration of hundreds of thousands of
two-dimensional points.

Abstract—With web-technologies gaining popularity in use, designed information visualizations can now enjoy wide dissemination
without the need for operating system-specific implementation. The process of porting existing visualizations that use GPU-enabled
programming (such as OpenGL) to WebGL enables the instantiation of efficient, interactive data visualizations that can scale to
larger datasets and larger canvases. In this paper, we present our porting of the Splatterplot system to a WebGL implementation,
which we call SplatterJs, enabling interactive viewing and summarization of hundreds of thousands of two-dimensional points in the
browser. We describe our experiences in implementing this raster-based visualization in WebGL, taking care to retain interactive
rendering performance. In particular, we discuss using the GPU as a computational unit to transform data, or alternatively using
binary data-streaming facilities built into HTML5 for using backend systems to supply transformed data.

Index Terms—WebGL, Splatterplots, data transformations, GPGPU algorithms

1 INTRODUCTION

There are many challenges for effective, scalable visual representation
of large datasets. Many of these core challenges for rendering effec-
tive representations lie in creating scalable visual designs as well as
efficient implementations that allow for interaction. Scalable visual-
izations allow the viewer to obtain an overview of trends in the dataset,
while interactive elements (e.g. zooming, expanding particular trends)
allow the viewer to recover individual details upon closer inspection.
Interactive methods and implementations are needed in order to tackle

• Alper Sarikaya is with the University of Wisconsin—Madison. E-mail:
sarikaya@cs.wisc.edu.

• Michael Gleicher is with the University of Wisconsin—Madison. E-mail:
gleicher@cs.wisc.edu.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of
publication xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

the challenge of aggregating and summarizing many elements, while
retaining interative speeds for exploration. Information visualizations
can use the power of the client’s GPU to bring interactive speeds to the
scalable display of data. In addition, given the ubiquity of browsers,
visualizations implemented in WebGL can enjoy wider reach to po-
tential viewers. However, implementing visualizations in this environ-
ment imposes constraints, from the comparatively slow performance
of JavaScript to the communication pipeline between JavaScript and
the GPU, both of which require additional consideration. In this pa-
per, we present our experiences in implementing the Splatterplot sys-
tem [9] for WebGL (named SplatterJs), with discussion on how we
worked within constraints for maintaining client interactivity in the
browser.

In our iterative development of SplatterJs, we ran into several chal-
lenges when porting the native-code OpenGL implementation to one
using WebGL. One of the most significant issues was the amount
of CPU-based computation done in the original model, which had
a significant adverse effect on performance when directly ported to
JavaScript and WebGL. This forced us to re-evaluate how we per-



formed operations on the data, including the consideration of moving
these computations to the GPU through the use of WebGL. In order
to perform reduction and subsampling operations, we used general-
purpose GPU (GPGPU) algorithms and stored the results to textures
to be used in downstream rendering steps. We expand on the specifics
of the WebGL implementation of SplatterJs, and note some general
lessons from our experience using WebGL to architect visual scalabil-
ity into an information visualization.

2 ARCHITECTING VISUALIZATIONS FOR WEBGL
The GPU (graphics processing unit) is a powerful piece of hardware
that excels at the massively parallelizable operations such as deter-
mining the color of each pixel. The power of the graphics primitive
pipeline to take data through programmer-defined vertex shaders, frag-
ment shaders, and various compositing operations is a convenient tool
to have in the visualization designers’ toolbox. The allure of WebGL
is in the marriage of GPU control coupled with the increasingly ubiq-
uitous nature of internet browsers—it is an opportunity to bring GPU-
accelerated graphics to the mainstream, without the overhead of in-
stalling a native application for the viewer.

WebGL itself is growing in popularity, due to the adoption of
WebGL as the graphics standard for many mobile devices. Though the
functionality of the standard is considerably behind the current version
of OpenGL (WebGL 1.0 currently implements similar functionality to
OpenGL ES 2.0 [7]), the opportunity that WebGL presents by provid-
ing an interface to utilizing clients’ GPUs as a computational unit is
very promising for designing visualizations that can handle, process,
and render constantly increasing amounts of data. Previous work has
started to examine the utility of GL in information visualization. In
particular, the work by McDonnel and Elmqvist [10] and Andrews and
Wright [1] look at using OpenGL and WebGL shaders, respectively, to
render common information visualization designs.

In typical programming practice, data manipulation (such as ab-
straction, filtering, projection, and subsampling) is often done in CPU
code. Once the data is transformed appropriately, it is handed off to
the rendering procedures. In the browser, this process can be done in
one of two modes: those methods that bind data to shapes and modify
those shapes depending on the data characteristics (e.g. creating an
SVG drawing using D3.js [2]), or methods that raster individual pix-
els (2D canvas or WebGL), which use the GPU to compose the final
visualization. In contrast to operations manipulating the data directly,
some methods operate over image space, transforming the visual ab-
stractions of the data. These methods may operate over shapes gen-
erated and bound to data in a SVG image, or pixels generated on a
canvas.

In natively-compiled code, data-space computations are typically
done on the CPU, while image-space operations are often done on the
GPU. This paradigm doesn’t necessarily port well to WebGL —though
the GPU is a powerful computational unit, the latency of transferring
data from memory to the GPU is relatively high. This performance
cost becomes more precarious using WebGL within the context of the
browser. To maintain responsiveness for the viewer, care must be taken
to minimize the unnecessary data transfer across this interface. Our ex-
periences in porting the Splatterplot application to WebGL shows that
minimizing this data transfer is key to maintaining interactive speeds
for the user.

To minimize the transfer of transformed data from main memory
to a GPU buffer, one possible solution could be to push computations
to a backend server. While this operation may seem expensive, recent
developments in HTML5 have enabled the transfer of binary data di-
rectly to WebGL through well-typed arrays in JavaScript called array-
buffers [7]. Arraybuffers can be filled manually, through XML HTTP
requests (XHR), WebSockets (essentially TCP connections directly to
the client), or WebWorkers (“multi-threading” for JavaScript) [6]. Us-
ing these interfaces (e.g. setting the messageType to arraybuffer), one
could conceivably use a database or computational backend to stream
new or transformed data directly to the viewers’s GPU buffer for im-
mediate visualization. Previous work has started to explore this con-
cept of loading data using well-formed blobs, such as the imMens sys-

tem [8]. imMens uses specially-designed PNGs to bring a data cube
client-side, which supports interactive brushing and linking of large
amounts of data, using the client’s GPU as a processing unit to pull
relevant aggregations from the data cube. We note that this area is
potentially ripe for additional work, and encourage the exploration of
this space.

An alternative solution to moving data-space computation to the
backend could be to move data-space computation directly to the GPU.
The utility of this solution depends on the feasibility of porting the
data transformation to the GPU, and managing the pipeline of data-
space and image-space computations done on the data from data in-
gest to visualization rendering. The data-space transformations of ab-
straction, filtering, projection, and subsampling can be performed in
WebGL using fragment shaders by employing GPGPU algorithms and
re-purposing image-space algorithms for data. For example, we can
use the GPGPU pattern of reduction [3] to find the maximum value
in a texture that stores point density. We can also subsample points
by using the depth test, and compute distance fields using algorithms
such as the jump-flooding algorithm [12]. We elaborate on this solu-
tion with a discussion of our experiences implementing Splatterplots
in WebGL, describing the possible ways that data-space computation
can be adapted to use the client’s GPU.

3 ADAPTING SPLATTERPLOTS TO WEBGL
Splatterplots [9] is an information visualization technique that handles
overdraw that occurs when plotting thousands to millions of individ-
ual points in a scatterplot. If many points occupy the same x- and
y-position in a scatterplot, it can be difficult to distinguish whether
one or multiple points are at a particular position in a conventional
scatter plot, and more difficult still to provide a density comparison
of stacked points (e.g. 3 points at this position against 17 points at
another position).

Splatterplots address these issues of overdraw by utilizing kernel
density estimation (KDE), which abstracts low-level features (individ-
ual points) to provide the viewer with an idea of the density of points
in space. The key idea in Splatterplots is to use a screen-space KDE
that performs abstraction at overview scales and revealing details at
smaller scales, while also highlighs representative outlier points out-
side of the thresholded region. These heuristics combine to create a
visual paradigm that can handle visual scalability for scatterplots at
a high-level overview, while also supporting interactivity (through its
screen-space parameterization of its KDE) to recover individual points
and positions at smaller scales.

The processing pipeline for every rendered frame in Splatterplots is
shown in Figure 2. Each operation is colored based on which compu-
tational unit it utilized in the original implementation. For each data
series, the points are drawn to a texture that collects the density of
points on each pixel (overdraw). This density is then approximated by
KDE, using a Guassian kernel. The maximum density is recorded, a
thresholded region is defined (by default, those pixels containing 50%
of the maximum density), and representative points are randomly sub-
sampled at regular intervals outside of the thresholded area to reinforce
that data exists outside of the thresholded region. Finally, each series
is composited together to form the final Splatterplot, using generated
colors for each data series that are selected to be the most discrim-
inable. Of particular note in our discussion here are the operations that
find the maximum density value (an operation also done by previous
visualization systems using density textures, cf. [5]) and the subsam-
pling of points for drawing representative outliers.

Many of these methods (shown as hexagons in Figure 2) were suited
directly for implementation in WebGL. For example, OpenGL is well-
suited for collecting the per-pixel density for every pixel in the view-
port: disable the depth test, enable blending, and change both the
blend equation to add (gl.FUNC ADD) and the blend function to one
(gl.ONE). These changes result in counting points that fall in each
fragment, effectively creating a texture that stores point density data.
Some operations, however, were conceptually easier to implement in
native code, such as determining the maximum density (reading the
texture into memory and iterating through the buffer) or subsampling



Input Data

Current
viewport
bounds

2D points

Splatterplot

Distance
�eld

Maximum
density

Density
(in viewport)

Group
into bu�ers

Blend

JFAFind max
density

Shade
(thresholds)

Subsample
points

KDE
(blur)

(n)

preprocessing rendering

Fig. 2. Data flow through the Splatterplot visualization technique. All processes (hexagons) produce outputs (rectangles), which take the form of
textures. Those computations that are performed on the CPU in the original implementation are in orange, while GPU implementations are in red
and the one-time preprocessing computation is in green. We adapted all rendering steps to the GPU, including rendering steps that transform input
data for downstream rendering (§3.1).

the points (using a spatial data structure to iterate and subsample points
to use as outliers). While potentially inefficient for performance, CPU-
native code (the project was implemented in both C++ and C#) swal-
lows the performance cost, and the technique remains interactive for
the viewer when panning and zooming the dataset (see the Splatterplot
manuscript [9] for detail in the scale of the data).

After the Splatterplot technique was presented [9], the visualiza-
tion stirred interest, but potential users wanted an online solution that
would let them quickly visualize their own data and see higher-level
patterns. A natural choice to implement this system was WebGL, given
the similarity between the GL interfaces. In the implementation of this
system, however, several issues were encountered, and needed alter-
native implementations to maintain the real-time interactivity of the
visualization. Most notably, performing transformations of the data
(hundreds of thousands to millions of points) to support the various
heuristics of Splatterplots in JavaScript proved to bog down clients on
even the most advanced systems. Reading a (float-encoded) texture
back into local memory is an illegal operation in WebGL 1.0 [7] (see
§5.14.12), the method used by the original implementation (though
WebGL workarounds exist). Randomly subsampling data points to
select exemplar outliers iteratively in JavaScript proved to be too slow.

These sort of issues motivated us to explore re-architecting Splat-
terplots for WebGL. We appreciated not only having a completed pro-
totype through this exploration, but also reusable components (such as
the KDE implementation) for future visualizations using WebGL.

3.1 Performing Data Transformations in WebGL
Here, we will describe the problems we encountered in porting to
WebGL, and provide our rationale and solutions to resolve them.

The “Find max density” method (Fig. 2, center) is a rate-limiting
step in the rendering process, and is used to determine the thresholded
region. In the original implementation, density data for all pixels were
read into main memory, where iterative reduction found the maxi-
mum density value to be passed as a uniform to downstream meth-
ods. Although WebGL does not support the readPixels method
to read values from textures with encoded floats, methods have been
derived for encoding float values into four uint8 values of a RGBA
texture according to the IEEE 754 specification (cf. [4]), then calling
readPixels on the surrogate texture to retrieve the original float
value. We elected instead to use the common GPGPU design pattern
of reduction [3] that reduces values in a texture by consolidating values
to a particular corner in order to find the maximum density value.

Given a texture and a reduction step size, an aggregation measure
(in this case, max) can be done in several passes over the texture. With

a step size of 8 pixels, an 8× 8 square can be minimized to a single
pixel by repeatedly applying the aggregation function. For a canvas of
800×600 pixels, three passes (with a step size of 8) are necessary to
reduce nearly 500k pixels to two. Instead of passing a float uniform
to downstream shaders that determine the thresholded region, the final
max texture can be passed along, with subsequent shaders instructed
to pull the value of the maximum density from the top-left corner of
the reduced texture.

Representative outlier points are shown in Splatterplots to alert the
analyst that data exists outside of the thresholded and shaded regions,
even when viewing the dataset at an overview-level where the points
would normally be blurred away. To minimize excess data display,
only a single point is shown in every 25× 25 pixel block (parameter-
tunable). In the original native code implementation, points were it-
eratively picked at random at binned intervals in main memory. This
approach did not scale when porting to JavaScript due to the high com-
putational cost.

As all data points are retained in a data buffer in the GPU, we uti-
lized a two-pass algorithm to (1) write point coordinates to a binned
location in a temporary texture and (2) draw the point at the coordi-
nates provided by each binned location. To select just one particular
point from every grid cell, we associate each data point with a ran-
dom value between zero and one and assign it to the z-coordinate with
the depth test turned on. This has the effect of always selecting a sin-
gle point for each spatial bin, as well as preventing twinkling (points
winking into and out of existence) of individual outlier points when
panning and zooming the display.

3.2 Implementation of WebGL Splatterplots

In the user interface of the WebGL Splatterplots application, we have
added several sliders that allow the viewer control over the bandwidth
of the KDE function, the threshold of the thresholded regions, as
well as a outlier clutter metric (nominally the subsampling grid size).
The event handlers for these elements modify the uniform parameters
passed to the shaders and trigger a redraw of the canvas to interactively
provide the user feedback when the slider is moved.

The application allows the viewer to upload their own data files,
and asks for feedback when parsing a flat file for the two dimen-
sions to plot (x and y dimensions), as well as an optional ‘group
by’ column, which is used to separate a singular file into multiple
data series. A working demo (allowing data uploads) and the source
code of the WebGL splatterplots application are available online at
https://github.com/uwgraphics/splatterjs.

https://github.com/uwgraphics/splatterjs


Fig. 3. A single year (2011) of FARS (Fatality Analysis Reporting Sys-
tem) data shown in SplatterJs. The dataset comprises nearly 31,000
points. The viewer is free to zoom and pan about the dataset, much like
in typical web-mapping applications.

4 DISCUSSION

Through this paper, we have discussed the use of WebGL for enabling
web-based, interactive data visualizations that previously were only
possible in natively-coded applications. Through several techniques
of moving some data transformations to the GPU, we can empower
users to deploy and view a complex visualization system without the
additional cost of having to install and run software. A web-client’s
GPU can be utilized to transform data through aggregation and sub-
sampling for use in downstream visual rendering.

WebGL has proven to be a very portable way to present and dis-
seminate a data visualization. From our experience, however, there are
several factors to consider when evaluating the use of WebGL in an in-
formation visualization. Chief among these factors is the reality that
most of the data-space computation will need to be done in WebGL.
While it may be more natural for the programmer to implement data-
space operations using JavaScript, the nature of loading data repeti-
tively from the client’s browser to the client’s GPU and vice versa has
shown to be an expensive operation. If possible, all time-consuming
data-space operations will have been done before WebGL receives the
data, or these operations must be possible with vertex and fragment
shaders. The method of delivering data to the client must be reliably
quick—although we use flat files in this case, we can also take advan-
tage of binary interfaces for efficiently loading large amounts of data.
Finally, the image-space operations required for visualization render-
ing must fit the GL paradigm: data must either be discrete and aggre-
gated for display by (multiple) shaders, or be encoded in such a way
that the data element maps directly to a graphics primitive. Although
we have shown just two particular data-space implementations on the
GPU, we believe that exploring the space of data transformation im-
plementations in WebGL can help enable visualizations of larger scale
and greater complexity in an implementation space more accessible to
viewers.

We have concentrated on methods for transforming data on the
GPU, but we note that future work can use binary data scaffolds in
Javascript to support off-client computation. We transform the data
in SplatterJs from uploaded comma-delimited files, but we also have
had success in other applications using XHR requests for binary data
(using xhr.responseType = arraybuffer) to fill well-typed arrays in
JavaScript, and subsequently loading WebGL buffers with that data.
Issues of varying endianness must be supported, however. [11]. Load-
ing binary data to a JavaScript application is not just limited to XHR
requests; WebWorkers and WebSockets can also handle binary data,
which potentially enable receiving streaming binary-packed data from
database and computational sources. Additionally, using the DataView

construct available in ECMAScript v5 allows for parsing of heteroge-
neous binary streams. We see this functionality in conjunction with
WebGL’s ability to handle streaming data as a ripe area for future ex-
ploration.

ACKNOWLEDGMENTS

We thank Adrian Mayorga, Deidre Stuffer, and organizers of the Data
Systems for Interactive Analysis workshop for their helpful comments
in framing this work. This work was supported by NSF award IIS-
1162037 and NIH award 5R01AI077376-07.

REFERENCES

[1] K. Andrews and B. Wright. FluidDiagrams: Web-based information vi-
sualisation using JavaScript and WebGL. In N. Elmqvist, M. Kennedy,
and J. Hlawitschka, editors, EuroVis—Short Papers. The Eurographics
Association, 2014.

[2] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven docu-
ments. IEEE Transactions on Visualization and Computer Graphics,
17(March):2301–2309, 2011.

[3] I. Buck and T. Purcell. A toolkit for computation on GPUs. In GPU
Gems. Addison Wesley, 2004. (Chapter 37).

[4] Carlos Scheidegger. encodeFloat() — Lux. https://github.com/

cscheid/lux/blob/master/src/shade/bits/encode_float.js.
Accessed: 2015-09-15.

[5] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglom-
erative edge bundling for visualizing large graphs. In Proceedings of the
IEEE Pacific Visualization Symposium, pages 187–194. IEEE, 2011.

[6] Khronos Group. Typed array specification. https://www.khronos.

org/registry/typedarray/specs/latest/. D. Herman and K.
Russell, editors. Accessed: 2015-07-20.

[7] Khronos Group. WebGL 1.0 specification. https://www.khronos.

org/registry/webgl/specs/latest/1.0/. D. Jackson and J.
Gilbert, editors. Accessed: 2015-07-20.

[8] Z. Liu, B. Jiang, and J. Heer. imMens: Real-time visual querying of big
data. Computer Graphics Forum, 32(3pt4):421–430, 2013.

[9] A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in
scatter plots. IEEE Transactions on Visualization and Computer Graph-
ics, 19(9):1526–1538, 2013.

[10] B. McDonnel and N. Elmqvist. Towards utilizing GPUs in informa-
tion visualization: a model and implementation of image-space oper-
ations. IEEE Transactions on Visualization and Computer Graphics,
15(6):1105–1112, 2009.

[11] Mozilla Developer Network. DataView - JavaScript. https:

//developer.mozilla.org/en-US/docs/Web/JavaScript/

Reference/Global_Objects/DataView. Accessed: 2015-07-20.
[12] G. Rong and T.-S. Tan. Jump flooding in GPU with applications to

voronoi diagram and distance transform. In Proceedings of the Sym-
posium on Interactive 3D Graphics and Games, pages 109–116. ACM,
2006.

https://github.com/cscheid/lux/blob/master/src/shade/bits/encode_float.js
https://github.com/cscheid/lux/blob/master/src/shade/bits/encode_float.js
https://www.khronos.org/registry/typedarray/specs/latest/
https://www.khronos.org/registry/typedarray/specs/latest/
https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://www.khronos.org/registry/webgl/specs/latest/1.0/
 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView
 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView
 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView

	Introduction
	Architecting Visualizations for WebGL
	Adapting Splatterplots to WebGL
	Performing Data Transformations in WebGL
	Implementation of WebGL Splatterplots

	Discussion

