
Eurographics Conference on Visualization (EuroVis) 2014
H. Carr, P. Rheingans, and H. Schumann
(Guest Editors)

Volume 33 (2014), Number 3

Visualizing Validation of Protein Surface Classifiers

A. Sarikaya1, D. Albers1, J. Mitchell2,3, and M. Gleicher1

1 Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
2 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
3 Department of Mathematics, University of Wisconsin-Madison, Madison, WI, USA

Abstract
Many bioinformatics applications construct classifiers that are validated in experiments that compare their results
to known ground truth over a corpus. In this paper, we introduce an approach for exploring the results of such
classifier validation experiments, focusing on classifiers for regions of molecular surfaces. We provide a tool that
allows for examining classification performance patterns over a test corpus. The approach combines a summary
view that provides information about an entire corpus of molecules with a detail view that visualizes classifier
results directly on protein surfaces. Rather than displaying miniature 3D views of each molecule, the summary
provides 2D glyphs of each protein surface arranged in a reorderable, small-multiples grid. Each summary is
specifically designed to support visual aggregation to allow the viewer to both get a sense of aggregate properties
as well as the details that form them. The detail view provides a 3D visualization of each protein surface coupled
with interaction techniques designed to support key tasks, including spatial aggregation and automated camera
touring. A prototype implementation of our approach is demonstrated on protein surface classifier experiments.

Categories and Subject Descriptors (according to ACM CCS): J.3.1 [Computer Applications]: Life and Medical
Sciences—Biology and Genetics

1. Introduction

The core challenge of structural biology is to understand
how the form of a molecule connects to its function. A key
approach is the development of computational models that
predict locations on the surfaces of molecules where, for ex-
ample, the molecule will bind with another. Such models are
validated by comparing their results with experimentally-
derived ground truth. Inspecting these results on a single
molecule is challenging as the similarities and differences
are spread around a 3D surface that has occlusions and irreg-
ular shape. Detailed examination of the results of an exper-
iment involving dozens of molecules is prohibitive. Bioin-
formaticians typically resort to examining only aggregate
statistics, losing the opportunity to examine the details of
the experiments to find interesting cases within the set or to
provide feedback to the modeling process.

This paper introduces an approach to explore the results
of classification validation experiments. We focus on sur-
face classification, where the model predicts whether each
location on a protein’s surface is likely to bind to an-
other molecule. The challenge is to provide an overview

of the results of an entire validation experiment with many
molecules, allowing the viewer to identify locations of in-
terest, while retaining facilities for examining the specific
details of interesting sites. Our approach addresses this chal-
lenge with a small-multiples view designed to allow a viewer
to see aggregate properties on individual molecules as well
as to identify details of interest that lead to these properties.
This overview is connected to a detail view that provides
specialized navigation controls over the 3D structures, al-
lowing regions of interest to be examined rapidly.

Our approach is based on two key ideas. The first is that
an overview can be designed specifically for understanding
aggregate properties over multiple scales. Using 3D views
of molecules for the overview is impractical, as they re-
quire more space, more time to navigate each surface, and
do not afford quick summarization. Instead, we build on
recent work demonstrating that people can perceive aggre-
gate properties over certain kinds of displays to design 2D
views that allow the viewer to quickly assess classifier re-
sults across an entire set of molecules. This overview can be
used to identify specific molecules to explore more closely
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Figure 1: Visualization of a validation experiment for a DNA-binding surface classifier. The corpus overview (left) is configured
to display each molecule as a quilted glyph and orders these glyphs by classifier performance to show how performance varies
over the molecules. Selected molecules (left, yellow box) are visualized as heatmaps in a subset view (middle) and ordered
by molecule size to help localize the positions of errors relative to correct answers. The detail view (right) shows a selected
molecule to confirm that most errors (blue, red) are close to the correctly found binding site (green).

in 3D, as well as to suggest features of interest on these sur-
faces. The second key idea is to use information about the
viewer’s interest to drive navigation along the surface. Our
approach abstracts information over the surface to identify
discrete regions of interest, which are used to create naviga-
tion controls aligned with the information in the overview.

Bioinformatics classifier experiments are common: for
example, a recent survey [IYA12] notes several hundred pa-
pers per year, in just three bioinformatics journals, involve
presenting classifier validation results. The survey notes that
most of these papers report only simple statistics, at best
providing statistical confidence tests. Better tools for explor-
ing the results of these experiments could improve predictive
model development and application. For example, identify-
ing specific molecules or classes of molecules where a clas-
sifier performs well may help in understanding the generality
of the predictive model. Identifying false positives may help
in selecting challenging decoys. Patterns of false negatives
may suggest alternative mechanisms not represented or cap-
tured in the model training process. Individual errors can be
assessed to see if they are near misses or anomalies.

The results of classifier validation experiments have a
simple form. For each object in a corpus, every location has
a prediction (positive or negative) marked by its correctness
(true or false). This work specifically considers protein sur-
face classifiers, where the objects are protein surfaces and
the locations are 3D positions along those surfaces. How-
ever, the problem of comprehending validation experiments
exists in other bioinformatics domains, for example in clas-
sifying properties of sequences. The ideas of our approach
should apply more generally. Although the detail views are

specific to 3D shapes, similar ones could be developed to
navigate long sequences.

In providing a system that addresses the needs of scien-
tists assessing the results of surface classifier experiments,
our work makes several contributions. We demonstrate that
recent results in how viewers perceive visual information in
aggregate can inform overview designs and provide exam-
ples showing how glyph designs can be created to support
a variety of aggregate assessment tasks. We also show how
region grouping can be applied to provide interface support
for exploration tasks. While our approach is demonstrated in
a specific application for examining molecules, we believe
that the contributions generalize to similar domains.

To present our approach, we begin by considering related
work in the visualization of molecules and machine learning
results. We then discuss our overview display, exploring a
space of designs that leverage perceptual principles to sup-
port various assessment tasks. Next, we describe our detail
view, explaining our specialized molecular view and data-
driven interaction designs that aggregate regions of potential
interest to support the viewer’s tasks. Finally, we conclude
by describing a prototype implementation and example use
cases.

2. Previous Work

The design of overview displays for large data collections
is an important topic in visualization, see Hornbæk and
Hertzum for a survey of the issues and approaches [HH11].
To be effective, overviews must be designed to support ef-
ficient visual processing by considering the abilities of the
perceptual system, see Ware for an introduction [War12].
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Perceptual science has built an understanding of the types
of visual features that can be processed efficiently. The visu-
alization community has built upon this knowledge to guide
display design (see Healey and Enns for a survey [HE12]).
These perceptually efficient, or “pre-attentive,” features al-
low for rapid search in complex displays by, for example,
leveraging “pop-out” effects, where properly encoded fea-
tures can be located quickly in a large complex displays. Our
design follows these guidelines, using salient colors that al-
low the viewer to rapidly find important locations.

Recent research in perceptual science demonstrates that
people can efficiently estimate aggregate properties of large
collections of objects. For example, people can estimate nu-
merosity [HSF06] and average size [Ari01]. Recent work
in visualization (cf. [CAFG12, ACFG14]) shows that this
applies to visualization displays, enabling visual aggrega-
tion where the viewer estimates statistical properties. Cer-
tain types of visual features, such as color, can be averaged
more effectively than others [CAFG12], and performance
can be further improved through other design choices. Al-
bers et al. [ACFG14] consider a range of estimation tasks
and show how different visual designs can lead to displays
that excel at different tasks. Our approach follows previous
examples of visualization systems specifically designed with
these principles in mind (e.g. [ADG11, CAFG12]).

Flexible views can be effective to highlight patterns of in-
terest when those patterns are not known a priori. A com-
mon approach for creating flexible views is to use a small-
multiples display [Tuf91]. The ability to reorder juxtaposed
small-multiples can help adapt them to support different
tasks by spatially clustering objects with related properties.
While the basic concept of a reorderable display was in-
troduced by Bertin [Ber81], recent work by Slingsby et al.
[SDW09] has highlighted the power of reordering to support
answering the range of questions a viewer may seek. Our
overview applies this flexible reordering approach.

2.1. Molecular Visualization

Many existing visualization tools have been developed to
support molecular visualization tasks (see O’Donoghue et
al. for a survey [OGF∗10]). Modern molecular graphics sys-
tems provide many different views of large molecules, in-
cluding views that encode data fields on molecular surfaces.
Such programs can be used to show results of classifier ex-
periments on specific molecules; however, they are not tai-
lored to the specific needs of understanding classifier perfor-
mance across a corpus of molecules. Our approach provides
a similar view, but augments it with interaction techniques
specific to the task, coupling it with an overview display.

A handful of existing systems provide visualization over
collections of molecules. Some systems, such as the web
interface to the Protein Data Bank (PDB) [BWF∗00], pro-
vide visual galleries using standard 3D displays as icons for

molecules. Karve and Gleicher demonstrate a system de-
signed to provide an overview of the metadata of a collec-
tion of proteins [KG07], but the design does not consider
specific tasks or support classification experiments, and their
glyphs are not optimized for pre-attentive summarization.
Khazanov and Carlson present statistical properties over a
large collection of molecules [KC13], but use only standard
summary statistic visualizations such as bar and line charts,
and provide no connections to specific molecules. To the best
of our knowledge, our approach is the first to consider pro-
viding an overview of a collection of molecules that supports
both summarization and detail finding.

2.2. Machine Learning Visualization

Visualization for machine learning applications strives to
communicate either the internals of the predictive process or
trends in the outputs. Tools for understanding prediction pro-
cesses are tailored to particular machine learning algorithms,
such as linear SVMs [CCH01], decision trees [vdEvW11],
and hidden Markov Models [DC08]. Our work falls into the
latter, helping viewers to understand results.

Summarizing the results of a classifier can be problematic
as there are different types of errors in a model [WFH11].
Several methods of quantifying performance exist [Pow11].
Basic metrics such as accuracy, precision, and recall do
not capture the error profile and are problematic for biased
distributions. The Matthews correlation coefficient (MCC)
[Mat75] accounts for class distribution to compare a classi-
fier’s performance to chance, but still provides only a single
summary statistic for performance.

Visual methods provide a more detailed presentation of
machine learning results. Talbot et al. use an interactive vi-
sualization to let the user explore the contributions of indi-
vidual models in an ensemble scenario [TLKT09]. Fails and
Olsen show interactive adjustment of parameters to tune a
predictive model [FO03]. The user can explore shortcom-
ings in the model and make adjustments to improve it. Our
work also provides this type of feedback.

3. Experiment Overviews

Experimental results for binary classifiers consist of a large
number of classification decisions, each of which has one of
four outcomes (true positive (TP), false positive (FP), true
negative (TN) and false negative (FN)), that form the bi-
nary confusion matrix [Ste97]. While the data is simple, it
grows quickly: experiments generally are run over dozens of
molecules, and there are tens to hundreds of decisions for
each molecule.

Our goal is to provide an overview of the collection of de-
cisions and corresponding experimental results. In addition
to showing overall performance, the overview should help
identify the specific molecules, and even parts of molecules,
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for which the classifier performs well or not. For instance,
it should allow the viewer to assess whether performance is
uniform across all molecules or varying; to identify groups
of molecules that perform similarly; to identify outliers or
anomalies that may represent problems; or to see high-level
patterns of performance between molecules. These assess-
ments can occur at different scales, for example an anomaly
might be a particular molecule whose performance skews
results, or a family of molecules skewed by concentrated
groups of false negatives.

Our approach uses two main ideas to support this range
of needs. First, it emphasizes flexibility, allowing the viewer
to reconfigure the display to suit their task. It allows for re-
ordering and for selecting among a set of glyph types. Sec-
ond, the glyph designs are designed to support rapid visual
aggregation. This allows the viewer to see both the aggre-
gate properties of the data and low-level details that form
these aggregates.

3.1. Reorderable Small-Multiples Design

The overview uses a small-multiples display, where each
molecule is shown as a small glyph in a grid. Different
designs for the glyphs are provided (described below), but
they share features that allow for pre-attentive summariza-
tion. Each glyph relies heavily on color encodings. Color
supports pop-out [HE12] and pre-attentive summarization
[ACFG14], making it useful for conveying aggregate prop-
erties as well as highlighting outliers. Each glyph has a gray
border whose lightness gives an indication of the overall per-
formance (MCC score, with darker borders representing a
higher value).

The small multiples can be reordered to explore different
types of questions. For instance, ordering by performance
(e.g. accuracy or MCC) places molecules with similar per-
formance together and allows for rapidly identifying strong
and weak performers. Ordering by molecule name facili-
tates finding a specific item of interest. Ordering by metadata
(properties of each molecule) emphasizes correlations be-
tween that property and performance. Coupling the different
orderings with different glyph designs provides a wide range
of configurations to support various questions. For example,
sorting by the size of the molecule and choosing an appro-
priate glyph type can not only show whether large molecules
perform better or worse than others, but can also indicate
whether the errors form large groups on the molecules.

The overview provides some basic interaction features
that directly support common tasks. Selecting a glyph can
open the molecule in the detail view for closer examination.
Sets of glyphs can be selected and opened in a new overview
window, allowing for more localized analysis of subsets of
the dataset. The user can annotate the glyphs in order to track
which molecules have already been examined or should be
explored in greater detail.

3.2. Glyph Design

3D views of the molecule would be difficult to see in the
small space of the glyphs. Additionally, because at least half
of the molecule is occluded, some form of navigation or sur-
face unfolding would be required to make an assessment of
the whole surface. The highly irregular shapes of molecules,
with their significant pockets and protrusions, make mean-
ingful flattening difficult. Our current set of glyphs does not
provide a 3D or flattened view and therefore generally does
not convey the spatial layout of data on the molecule.

Instead, we leverage nonspatial 2D views that sacrifice in-
formation about the spatial arrangement of elements in order
to remedy occlusion problems inherent in 3D views. Further,
these views can be designed to support rapid visual compar-
isons both within an element and between multiple elements
by leveraging visual variables in the encoding design. In our
system, we leverage color as the dominant channel to encode
classification decisions to support rapid visual assessment,
mapping TP to green, FP to blue, FN to red, and TN to gray.
This color mapping leverages salience to support classifier
analysis tasks by considering a priori characteristics of the
data and task — TN are common and are mapped to gray
to decrease their saliency, while FN represent highly unde-
sirable classifications that generally require attention and are
mapped to red.

Our system allows the user to switch between different
glyph designs in order to configure the display to their task.
Each design supports certain kinds of visual queries.

Histograms (Figure 2a) are a standard encoding and are use-
ful for showing the performance distribution within a spe-
cific molecule. However, they become harder to interpret
when a single class dominates, and do not afford efficient
visual aggregation.

Confusion Matrix Treemaps (Figure 2b) sacrifice some of
the inter-class fidelity of histograms, but better show weakly
represented classes and make better use of space to afford
pre-attentive area judgements between elements. A vertical
divider delineates the proportion of correct classifications
(left side), and incorrect classifications (right), providing a
quick indication of the predictive accuracy.

Heatmaps (Figure 2c) encode the data from each decision
using small patches visualized in sequence order. Because
the size of the patches in a glyph is inversely proportional
to the number of decisions in the corresponding molecule,
this display gives a sense of the molecule’s size. Averaging
and proportion estimation is supported by the color encoded
design. As residue sequence order is related to spatial prox-
imity, this view can also provide some insight into how the
various points are grouped along the surface.

Quilted Blocks (Figure 2d) are similar to heatmaps, except
that the placement of the pixels from each color patch is ran-
domized within the glyph. This representation sacrifices any
sense of the structure of the sample to make pre-attentive
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(a) Histograms
support proportional

comparison.

(b) Confusion treemaps
show weakly represented

classes.

(c) Heatmaps
show proportions and

structure.

(d) Quilted blocks
show summary statistics

pre-attentively.

(e) Cluster plots
show spatial cluster sizes.

Figure 2: Different glyph encodings for overviews afford different observations about the data.

summary statistics easier to access [CAFG12] and to help
highlight performance patterns at the molecular level.

Cluster Plots (Figure 2e) use a squarified treemap represen-
tation [BHVW00] to indicate groups of similar classes that
are spatially clustered on the surface. While the glyph does
not convey the positions of the groups, it does convey their
number and size.

The overview can visualize either raw binary decisions
(positive or negative) or supplement these decisions with the
respective confidence of each decision. The viewer can op-
tionally show confidence values in the heatmap and quilted
displays. When visualizing confidence data, each of the four
colors is replaced by a three-step sequential color ramp in
the same hue drawn from Colorbrewer [HB03].

4. Detail View

While 2D overviews trade-off spatial information to commu-
nicate performance across multiple proteins, showing clas-
sifier decisions in the context of the surface is important
for understanding the connection between molecular shape,
chemical properties, and the decisions. Unfortunately, pre-
senting the classification results on a molecular surface has
several problems. Because the 3D view necessarily occludes
much of the surface, especially when there are pockets and
crevices, finding locations of interest can be challenging.
Also, when examining multiple disjoint features, the viewer
must remember which ones have already been examined.
Our approach attempts to remedy such issues for classifi-
cation results presented on the molecular surface through in-
teraction techniques designed to assist search and memory.

The detail view is a standard molecular surface visual-
ization, with triangle mesh surfaces created using MSMS
[SOS96]. Following [TCM06], we apply stylized shading
to convey shape, which inclues ambient occlusion shading
and contours. We perform visibility calculations for ambient
occlusion on the bounding sphere about the surface. Predic-
tions are encoded on the molecular surface using the same
color scheme as the overview.

4.1. Regions of Clustered Data

Protein classification necessarily discretizes the molecular
surface, though this sampling hides the fact that the molec-
ular surface is a continuous field. The viewer’s perceptual
system can group similar points to identify patches [Pal92];
however, when the sampled predictions alone do not form
coherent visual structures due to issues such as noise or un-
dersampling, perceptual grouping may be insufficient.

We simplify the extraction of high-level continuous pat-
terns from classifier data by explicitly grouping predictions
along the surface. This approach represents a trade-off of
fidelity for simplicity: we sacrifice information about indi-
vidual points in order to better characterize the high-level
continuous properties of the surface. This surface grouping
is illustrated in Figure 3. Classification regions are built by
performing connected components on labeled vertices. The
resulting boundaries are jagged, but precise. The regions can
be simplified by smoothing region boundaries by the mor-
phological operations of dilation and erosion [Ser82].

Grouping points into clusters provides a number of bene-
fits. Visually, it allows the display to emphasize the differ-
ences between groups by clearly marking the boundaries.
Simplifying boundaries reduces visual noise, making high-
level patterns more apparent. The resulting reduced set of
elements also simplifies user interface support for interfac-
ing with task-driven interaction techniques. For instance, the
discrete list of clusters provides a visual checklist for the
viewer to record regions they have already examined (Figure
5). Coupling this list with automatic navigation, we elimi-
nate the need to manually locate regions of interest along
the surface. Such identification is particularly valuable in lo-
cating small regions.

4.2. Automatic Viewpoint Selection

Locating individual clusters can be challenging. While some
clusters may be large and easily identifiable, others may be
small, hidden in pockets, or occluded from the current view-
point. Automatic viewpoint selection brings a selected clus-
ter to the center of the viewport without requiring the user
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Figure 3: Clustering similar values creates discrete regions
that can be identified visually and by interaction.

to manually navigate the surface. A user may navigate by
selecting a cluster from a reorderable list. Our method for
viewpoint selection builds on previous literature on finding
optimal viewpoint navigation [VFSH01].

We characterize a “good” viewpoint as one that maxi-
mizes the visible area of the cluster. To simplify the search
for the best viewpoint for a given cluster, our approach re-
stricts camera positions and paths to a bounding sphere about
the surface. Our implementation computes the visibility for
each vertex of the surface mesh, from a sampling of direc-
tions, when the surface is first loaded. This is used for illu-
mination computations to create ambient occlusion shading
and is also used for automatic viewpoint selection. To find
the best viewpoint for a region, the sampling direction from
which the most vertices of the requested region are visible is
selected. The corresponding point on the bounding sphere of
the molecule is chosen for the new viewpoint. The viewing
direction (look-at point) is chosen as the center of the region.

Transitions to a selected camera position are created
by spherically interpolating the viewpoint on the bounding
sphere, and linearly interpolating the look-at point. These
smooth transitions help the viewer remain oriented when
they select a region to transition to. These transitions also
serve as the building block for “automatic tours,” where the
system generates a list of regions and shows them to the
viewer in sequence. Such tours are useful to give an impres-
sion of the entire surface of a molecule.

4.3. Predictions and Scalar Fields, Simultaneously

Molecular graphics programs frequently use surfaces to dis-
play scalar data fields such as electrostatic charge and hy-
drophobicity. Bivariate encodings can be used in order to
make comparisons between these data fields and the classifi-
cation decisions. Although bivariate color ramps can encode
two fields [War12], it is difficult to extract each independent

TP

FN

FP

Figure 4: A multivariate encoding for a scalar field (shown
as the purple-to-green color field) overlayed on classification
values shown as procedural textures (checkerboard, grid,
Perlin noise). Note how TP (checkerboard) and FP (grid)
generally correlate with positive charge (green), suggesting
a correlation between charge and positive predictions.

dimension from the encoding [War09]. Bivariate ramp de-
sign is further complicated by luminance changes introduced
by shading on the molecular surfaces. Therefore, we instead
use textures to convey the classifier decisions, and reserve
color for encoding the field of interest.

Complex surfaces generally do not lend themselves well
to traditional surface parameterization for two-dimensional
texturing. We instead use 3D procedural textures [Per85] as
they can be mapped using only the coordinate system of
the molecule. Classification results are depicted using three
disparate textures (TP as checkers, FP as grid, FN as Per-
lin noise [Per85]). For example, in Figure 4, the relation-
ship between an input feature (electrostatic charge) and the
classification result is visualized by encoding feature data
with a seven-step, purple-to-green color ramp and classifica-
tions with texture. The scalar field color ramp is intention-
ally distinct from the colors used to encode classification re-
sults alone to avoid confusion. A histogram (bottom-right
in Figure 4) displays the distribution of the scalar field fea-
ture alongside the boundaries of the color ramp. This graph
serves as a control widget for updating the transfer function,
allowing the color ramp to be modified interactively.
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Figure 5: Our approach applied to the validation of a DNA-binding classifier. The overview window (left) displays the corpus
rendered as quilted blocks (§3.2), giving an idea of aggregate performance across the corpus. The detail window (right) shows
the clustered classifications (§4.1) for PDB: 1PVR_A, highlighted in yellow in the overview window. These clusters are itemized
(lower right), allowing for highlighting regions of interest and automatic navigation to view a selected region.

4.4. Dynamic Decision Boundary

To further help understand the classifier outputs, the decision
boundary for the classifier can be adjusted in the detail view.
Changing this boundary affects the classifications of predic-
tions by raising or lowering the threshold of a positive pre-
diction. The detail view (Figure 5) contains a histogram il-
lustrating the distribution of classifications for the visualized
molecule in the context of the current decision boundary.
The viewer can directly manipulate this boundary to high-
light predictions with a high confidence while reclassifying
the remainder and can push the new decision boundary back
to the overview to reclassify the entire corpus.

5. Use Cases

The prototype implementation of our approach is imple-
mented in C++, using FLTK and OpenGL 3.3. The sys-
tem can read in classification results for an entire corpus
experiment in a few seconds. In all cases we have tried,
the overviews are drawn in a fraction of a second so re-
configurations of the overview display (reordering or chang-
ing glyph type) is nearly instantaneous. The surface meshes
for each protein are generated using a standard external tool,
MSMS [SOS96]. While this tool may take up to several min-
utes to generate a surface mesh for a large protein, these
meshes can be pre-computed before an interactive explo-
ration. Our system can load a mesh and perform the visibility
computations required for ambient occlusion and navigation
in less than three seconds, even for very large molecules.

Timing information used a machine with an Intel i7 920
(2.67 GHz) CPU and a nVidia GeForce GTS 250 graphics
card.

We demonstrate our methods using two protein classifier
datasets: a DNA-binding classifier with a test corpus of 219
proteins (Figure 5) and a calcium-binding classifier with a
test corpus of nine proteins (Figure 7). Prior to our tool, as-
sessment of results was done by looking at tables of statis-
tics, and by loading surface colors into standard molecular
graphics tools. The executable and use cases are available
online at the project website at
http://graphics.cs.wisc.edu/Vis/PSCVis/.

5.1. DNA-binding Classifier

Figures 5 and 6 show a validation experiment of the
DNA-binding, residue-granularity, predictive binding model
named DNA-Binding Site Identifier (DBSI) [ZEM13].
Ground truth labels indicate that DNA has been found to
bind within five Angstroms of the residue in the crystal-
lographic structure. The model performs well, in terms of
summary statistics including F1 and MCC scores. How-
ever, closer examination of the validation results reveal more
about its performance.

Figure 5 shows the DBSI test set (219 proteins, sizes of
41–932 residues) loaded into the visualization prototype.
Using an overview with quilted blocks ordered by perfor-
mance confirms the overall peformance, but shows three dif-
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(a) PDB: 2I05_A, an example of good performance. A large
pocket (green) holds DNA while FN and FP are on the fringes.

(b) The region cluster plot summary glyph enables identification
of proteins having FP regions with similarly-sized TP regions.

(c) PDB: 2W7N_B, selected from the region cluster plot above,
shows large region of FP adjacent to the discovered binding site.

(d) PDB: 3FDQ_A; the linear shape of the binding site leads to
large regions of FN, suggesting alternative binding mechanisms.

Figure 6: Analyzing the spatial clustering of a DNA-binding
classifier reveals high-level trends of classification.

ferent types of errors. Molecules with good overall perfor-
mance (MCC) are predominantly TP, with some FN and
FP. Mid-performing molecules often have some TP, but also
large FP regions. Poorly performing molecules often have
large amounts of FN.

To examine the first type of errors, a region cluster plot
shows that many molecules have large TP regions, and many
small incorrectly classified regions. Examining these clus-
ters in a detail view (e.g. Figure 6a) shows that the small
errors are usually at the fringes of a correctly identified site.
Automated touring allows multiple examples to be exam-
ined rapidly to confirm this trend. These “near-misses” are
unlikely to be meaningful in practice as precise localization
is difficult because proteins are dynamic. However, it sug-
gests that the classifier designers consider spatial grouping
in order to improve their performance scores.

The region cluster overview also showed patterns in the
larger errors. One trend was molecules with large regions of
FP and TP (Figure 6b). The detailed views show the FP re-
gions surrounded the TP regions (Figure 6c). Screenshots of
the visualization were used to communicate results to sci-
entists, who suggested explanations. For example, binding
different sequences of DNA could result in minor conforma-
tional differences that change the label of nearby residues.

A third observation came from examination of some of
the poor performing molecules. The overview identifies
molecules with large false negative clusters. When examined
in the detail view), they often have a false negative cluster
with a long narrow shape (Figure 6d). The linear nature of
the binding site does not seem to be captured by the clas-
sifier — instead of the typical conformation of the protein
enveloping the DNA, the binding site of this particular pro-
tein seems to tuck itself into the grooves of DNA.

These three observations use elements of our approach,
with chosen overviews leading to details. Each would have
been difficult, or impossible, to make with the traditional ap-
proach of tables of statistics and manual inspection.

5.2. Calcium-binding Classifier

We applied our system to the validation of a calcium-binding
classifier based on surface descriptors [CPG12], but using a
simpler machine learning approach than in the paper. The
validation experiment had 11 proteins. As decisions were
made for each mesh vertex, each molecule had between 11k
and 63k data points.

This classifier performs poorly over the test corpus (MCC:
0.163); this is shown in Figure 7a. The large number of FP
(blue) shows that the classifier overestimates the number
of binding sites. Examining a specific example (Figure 7b,
left) confirms this trend. Adjusting the decision boundary to
be more conservative (Figure 7b, right) better captures the
true binding sites. Pushing the adjusted boundary to the en-
tire test corpus reveals that the more conservative decision
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(a) Confusion treemaps shows the results of
the calcium-binding classifier overestimate
potential binding sites with significant FP.

(b) PDB: 3ICB_A showing classification re-
gions with decision boundary 0.0 (left) and
2.61 (right).

(c) A heatmaps overview with the decision
boundary changed to 2.61, showing fewer
false positives, and the possible existence of
multiple binding mechanisms.

Figure 7: Analysis of a surface descriptor-based, calcium-binding classifier. Modifying the decision boundary indicates that
calcium may bind in multiple environments not adequately generalized by the classifier.

boundary causes entire binding sites to be missed (red, FN,
Figure 7c).

Corpus-level visual inspection reveals some trends in the
data and errors. The large number of small binding sites,
and the diversity of these sites, suggests that calcium binds
in many different kinds of environments. However, the er-
ror patterns show that while some sites are discovered cor-
rectly, many are missed. This suggests that the classifier is
only capturing some of the ways that calcium may bind. The
simple algorithm of the classifier, which cannot capture mul-
tiple modes, is insufficient; the complexity of the published
algorithm may be warranted.

6. Discussion

This paper introduces an approach for exploring protein sur-
face classifier validation results. The approach couples an
overview of a collection of molecules with a detail view for
examining specific molecules. The overview helps not only
to identify patterns of performance across the corpus, but
also to find specific molecules of interest. The detail view is
designed to address the search and memory issues involved
with exploring complex objects.

There are several limitations to this work. At present,
it does not support the comparison of multiple classi-
fiers. While some limited support for adjusting the decision
boundary is provided, we have no explicit mechanisms to
compare the different patterns that occur from adjusting this
boundary. We also do not provide any 2D summaries that
convey the relative spatial layout of disjoint classifications.
For example, none of the current encodings can show that
the false classifications occur close to true ones. While the
overview supports direct navigation to detailed views of spe-
cific molecules, it does not allow navigation to specific re-
gions of interest within these molecules. While our approach

should apply to classifiers for objects other than molecular
surfaces, we have not tailored the system for such applica-
tions nor designed new detail views.

The flexibility of our overview is a tradeoff: the ability
to reconfigure the display allows it to support a range of
queries; however, this requires the user to make informed
configuration choices. In time, we will evolve the set of
options and provide guidance on how to match them with
tasks. In practice, we believe that rapid reconfiguration al-
lows a user to find an appropriate view, potentially discover-
ing other perspectives on their data en route.

To date, the evaluation of our approach has been limited
to a few anecdotes and use cases. While specific elements of
our design could be evaluated in controlled studies, direct as-
sessment of the overall approach is more challenging. Tests
on controlled data sets can allow the confirmation that users
can actually identify the kinds of performance patterns our
system is designed to expose. However, a better validation
of our approach will be its success at helping in the design
of more effective classifiers. A challenge will be to convince
classifier developers of the potential value of close examina-
tion of their experimental results.

Even in our initial use cases, we have used the system to
help reveal insights into the physical groupings of the classi-
fications on protein surfaces. Overviews allowed identifying
trends and selecting examples to explore in detail. The detail
views enabled relating patterns of error to the performance
of the classifiers.
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