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Fig. 1. On the left, an abstraction of our proposed pre-processing layer, and how it fits into the log data analysis workflow. Pre-pro-

cessing helps to prepare log event data for downstream analysis by minimizing unnecessary noise during analysis.   On the right, 

pre-processing allows for selecting and cleaning those user sessions in the data that fail to successfully save a Hyperlapse video 

(Sec. 5.1.1).  This allows downstream analysis to see where people tend to exit the linear workflow.

Abstract—Many computational systems are generating log event data as a way to help developers understand the usage of 

applications in the wild.  While many commercial analysis tools exist, they tend to treat log event data as a “bag of events” instead of 

collections of observed sequences, where each sequence represents an individual session.  While recent work can support the visual 

analysis of event sequence data, log files tend to contain complexity in scale and noise that can foul downstream analyses.  In this 

work, we identify common recurring problems of noise that arise from the analysis of this data, and assert that methods for pre-

processing can be a valuable tool to both focus data for downstream analysis and provide provenance support for visual analytics 

tools. These pre-processing methods can be performed interactively and in conjunction with analysis tools to iteratively refine rules 

to streamline visual analysis. Through several case studies, we identify the common sources of noise in log files and demonstrate 

how our proposed pre-processing methods can help to minimize excess data reaching downstream analysis tools. 

Index Terms—Event sequence analysis, log analysis, data cleaning 

 

1 INTRODUCTION  

Log event data are becoming increasingly prevalent in analysis sce-
narios. These logs can collect application usage by clients (via telem-
etry), communications by distributed systems (through many logging 
streams), medical treatments and outcomes (through electronic health 
records), and even tracking by wearable devices (personal analytics). 
While log event data exist in a wide variety of domains, it can be dif-
ficult to analyze them to understand aggregate client or system behav-
ior. For example, in what order do users navigate through an e-com-
merce website before they complete a purchase?  Many current com-
mercial analytic systems for log analysis (see Sec. 4) do not treat 
logged events as parts of a larger sequence, instead simplifying them 
into bags of events. This, in turn, makes it difficult to aggregate be-
havior over many similar sets of linked events. A lack of a common 
lexicon for this type of analysis can hinder iterative, extensible im-
provement of analysis in this space. Through this work, we provide a 
discussion of the analysis tasks in this area, and suggest methods for 
directing interactive analysis of log data. 

There are a set of tasks that an analyst may want to perform with 
log data. These tasks generally deal with user-centric or workflow-

centric analyses, and eventually evolve to comparisons between sets 
of users or workflows. Common to all of these analyses, log data has 
a particular set of operations that can focus the downstream analysis 
of the data. Through this work, we show that different pre-processing 
methods prime different types of downstream analyses, guiding dif-
ferent avenues of exploration of this event data. 

Log file analysis is a subset of the domain of exploratory event 
sequence analysis, which in turn is supported by a variety of visual 
analytic tools such as DecisionFlow [4], EventFlow [9], and 
(s|qu)eries [16]. Such tools have demonstrated their utility in surfacing 
insights from data exploration, such as errors in execution or high-
lighting potential causality of conditions of interest.  However, many 
of these tools lack provenance support for focusing downstream anal-
ysis and sharing insights with colleagues. A typology of pre-pro-
cessing methods can help to streamline analysis of log event data, and 
provide a common lexicon for data manipulation. We emphasize that 
such methods to pre-process data for focusing analysis can be a valu-
able mechanism for persisting analyst state across multiple analysis 
sessions, either to share with a colleague or to retain context when 
restarting the analysis to minimize clerical work. 

In this work, we use several case studies to create a common ty-
pology of log data, and use this definition to identify tasks and issues 
in analyzing this data. We bootstrap this exploration through discus-
sions with stakeholders and their desires to extract insights from the 
data. We identify recurring troubles in both visual and manual analysis 
of log data, and suggest standardized methods for focusing down-
stream analyses. We show how pre-processing methods can make 
analysis quicker, more efficient, and potentially more expressive 
through several case studies, and suggest potential applications of 
provenance into existing tools. 

Preprocessing Analysis new 
working 
directory 

video 
trimmed 

chose 
settings 

processing 
finished 

65% 59% 58% 39% 

6% 1% 19% 

 
 

 Alper Sarikaya is with the University of Wisconsin-Madison. 

Email: sarikaya@cs.wisc.edu. 

 Emanuel Zgraggen is with Brown University. Email: ez@cs.brown.edu. 

 Rob DeLine, Steven Drucker, and Danyel Fisher are with Microsoft  

Research. Email: {Rob.DeLine,sdrucker,danyelf}@microsoft.com. 

Proceedings of the IEEE VIS 2016 Workshop on Temporal & Sequential Event 

Analysis. 

Available online at:  http://eventevent.github.io 



 

2 TASKS IN LOG EVENT DATA 

This work concentrates on the domain of log event data, which are 
structured as a sequence of timed events. Log event data tend to share 
a basic structure: each entry in the log contains (at a minimum) a time-
stamp, the event name, and (optionally) other associated attributes for 
the particular event or session. A key component of log data is the 
session identifier that allows downstream analysis to reconstruct the 
sequence of events within each session. This reconstruction is a criti-
cal component of effective log file analysis as it permits more expres-
sive queries of the data to be constructed with regard to their temporal 
order. Typically, a logged event is situated in a single point in time, 
though an event pair (e.g., “start”, “stop”) can define a time interval. 

We introduce a model dataset to help define the tasks common in 
log file analysis. Microsoft Research has released several applications 
that bring more powerful data visualization tools to Microsoft Excel 
through the Office Add-In store, organized under the “Visualization 
Toolkit” umbrella, called Aguvue internally [11]. These tools include 
a (2D) histogram, treemap, and streamgraph visualizations. Anony-
mous telemetry is collected that notes the sequence of actions a user 
takes when using the application within Excel, such as recording 
which buttons were clicked, colors selected, and the size of the dataset 
visualized. The development team is interested in how people are us-
ing these applications—are users generally satisfied with the results of 
the created visualizations? If there are errors, are there common paths 
that generally result in an error condition? Is there an overrepresented 
sequence of actions that lead to an abandonment of the application? 

These sort of queries of the data highlight the power of treating log 
file data as event sequences. Through related research and our case 
studies, we identify several buckets of tasks performed with log data: 

 What sequences of events lead to (or follow) an event of interest? 

 Which attributes of what events are potential indicators for a par-
ticular event occurring? 

 What are the distribution of attributes from an event of interest? 

 How does the temporal nature affect whether an event of interest 
is reached (or not)? 

 What is the measure of “drop-out” that occurs in the sequence of 
events leading up (or following) an event of interest? 

Certainly, there are similar analysis scenarios in sequence do-
mains. In these tools and commercial products (see Section 4 for a 
discussion), there is a fair amount of work required to prime the data 
for analysis. While all sequence data tends to have noise and cleaning 
of this data before analysis has become a standard task in sequence 
analysis, log file data generally tends to have very standardized, regu-
lar noise that can be categorized. The genesis of this noise comes from 
the relatively cheap cost of logging events in a software setting—it is 
cheap in development time and storage cost to log events thought not 
to be useful initially, but could assist in debugging and analysis in the 

near future, a common trend in the era of big data analysis [13]. For 
this reason, stakeholders tend to log as much as possible as they cannot 
understand what is missing before issues arise [1]. 

The tasks for log file analysis all involve discovering and identify-
ing motifs from noisy streams of sequence data. Noise in the data, such 
as extraneous events or attributes, has the potential to mask insights 
that would in turn hinder visual analysis. In the following subsection, 
we identify several motifs of noise in log event data that can foul 
downstream visual analyses. 

2.1 Noise in Log Event Data 

An example of noise in the Aguvue dataset could be a “slider” event, 
which is fired whenever a user moves a slider in the user interface. 
While many of these events appear in the data, generally just the final 
slider value is important to consider—the sequence of “slider” events 
can be collapsed into a single event, taking on the attribute value of 
the last appearing “slider” event. 

From this model dataset, log files encountered in our use cases 
(Section 5.1), and discussions with stakeholders (cf. Barik, et al. [1]), 
we synthesize a generalization of common noise patterns in log data 
that can create difficulties in downstream analysis tools. 

Repeated event — An event may be repeated many times, and the 
number of times it appears may not be important. Downstream analy-
sis will be cluttered with these events that may not be important to the 
analysis story. 

Useless event — An event may be occurring that the analyst knows to 
have no bearing on the current analysis task, or is interleaved from 
orthogonal operations. By not filtering these events, downstream anal-
yses could mark this event as a false positive for causality. An example 
of this noise can be seen in Figure 2, where spurious toolTip events 
make analysis of the event sequence needlessly cluttered. 

Ambiguous event — Depending on the history of events and their 
attributes leading to a particular event, a specific instantiation of an 
event may have alternate representations. Downstream analyses risk 
mistreating ambiguous events as noisy, hiding structure in the data. 

Irrelevant sessions — An analyst may concentrate on the sessions 
that touched a specific feature, had a specific error message, or com-
pleted the expected sequence of actions. Given this constraint, all 
downstream analysis must qualify its queries to operate only over the 
sessions of interest. 

Negation — As the dual of the previous problem, an analyst may want 
to understand why a successful condition was not met. From previous 
work of query construction for sequence data by Monroe, et al. [10], 
it is often difficult for an analyst to visually represent these negated 
queries in visual analytics systems. 

Subsequences — For some analysis scenarios, it may be insufficient 
to treat session identifiers as the sole method for organizing events in 
ordered sequences. For example, an analysis may concentrate on the 
events that occur within a particular workflow, which may be repeated 
within an individual session. 

Independent of the feature set of the downstream visual analytics 
tool used to perform sequential analysis of log data, we see a need to 
handle these patterns of noise to simplify and focus visual analysis.  

3 FOCUSING ANALYSIS THROUGH PRE-PROCESSING  

From these common types of noise in log data, we define several pre-
processing methods to simplify the data, and note how these methods 
can help analysis in these more focused contexts. Although we do not 
claim that this list enumerates all tools in the pre-processing toolbox 
for log event data, we have found that the following methods can be 
composed to encode powerful statements that are difficult to express 
in existing backend systems such as SQL. The decision for when and 
how to use these tools is governed by the analyst’s domain knowledge 
about the system and insights gained from previous explorations. By 
composing these methods appropriately, particular types of analysis 

Fig. 2. An example of the noise that frequently occurs in log event 

data. A flow diagram shows the history of three events leading up to 

a “toggle Percent checkbox” (cbPercent) event, relative to the occur-

rence of the target event. With increasing numbers of event types, 

this sort of visualization rapidly becomes unusable due to noise. 



tasks can be supported. Though we describe these methods in the ab-
stract here, we have created a prototype system to implement these 
methods using functional reactive programming (Sec. 5). 

Removing events — The useless event problem is mitigated through 
removing events. We have found that this is a common method for 
sifting through log event data—either the analyst knows that the event 
is irrelevant to the current thread of analysis, or discovers through ex-
ploration that a particular event is overrepresented in all analysis. To 
evaluate the efficacy of this method, the total number of occurrences 
removed or the percentage of sessions modified can be reported. 

Replace with a surrogate event — By replacing a matched event or 
a sequence of events with a surrogate, this method attacks the repeated 
and ambiguous event problems. This action allows the analyst to col-
lapse a well-known sequence of events to a single event; for example, 
if a sequence of seven different events identifies a successful applica-
tion start, they could be replaced by a “successful start” event.  

This operation can help to consolidate events based on semantic 
meaning, or even generalize over-specific events; for example, a set 
of undo events that have different names (e.g., “undoDraw”, “un-
doSketch”) could be represented by surrogate events with a common 
name (“undo”) with an added attribute denoting the specific type of 
action. Similar to removing events, feedback to the analyst would de-
note how many events or sequences were matched by the rule, as well 
as the percentage of sessions. 

Select sessions for analysis — Filtering the data to concentrate on a 
particular scenario is a common task in log data analysis, and it sup-
ports resolving the issue of irrelevant sessions. Sessions can be se-
lected based on a wide variety of criteria, including inclusion (or ex-
clusion) of a particular event, sequence of events, attribute value, or 
adherence to a temporal constraint.  

A key benefit of this method is that it implicitly defines the set of 
“everything else” (the negation issue), making meaningful compari-
sons possible. Supporting the visual comparison between multiple sets 
of sequences has been the focus of some visual analytics systems, such 
as the work by Malik, et al. for cohort comparison [8]. The feedback 
to the analyst for this method can note how many surrogate events 
were added through this rule, as well as in what proportion of sessions. 

Re-sessionize sequences — Exploding or splitting a session into 
smaller sessions can provide a more accurate representation for anal-
ysis scenarios that focus on a particular sequence of events. As an ex-
ample, if the current thread of analysis focuses on a workflow that may 
occur many times within a session, it may be advantageous to explode 
the workflow into multiple sub-sessions. This expansion can be ac-
complished by matching a particular set of starting and ending events 
(e.g., user entered and left a special state), a long enough temporal 
pause in the user session (e.g., user was idle), or splitting a session on 
a particular event (e.g., user closed the current project). Feedback from 
this operation would identify the number of sub-sessions generated, 
along with the number of sessions matching the rule. 

We note that these methods can be composited and applied in any 
order, see Figure 3 for an example instantiation. The interface that 
supports these rules should allow users to back out of a rule if they are 
unsatisfied with its effects, ideally presenting the order in which the 
rules were applied in a breadcrumb-like format. By supporting these 
methods, we anticipate that visual analytics tools that support log 
event data can use the iterative refinement of pre-processing rules 
within an analysis to foster serendipity in the discovery of insights. If 
the set of rules themselves are recorded and annotated, they can pro-
vide a powerful provenance mechanism for reuse between analysis 
sessions and enable collaboration in a visual analytics environment. 

4 RELATED WORK  

As noted in the introduction, log event data is closely tied to many 
other types of event sequence data. Many visual analytics tools have 
been designed and evaluated on electronic health records (such as De-
cisionFlow [4] and EventFlow [9]), and log file analysis [16]. As part 
of the analysis, many of these tools prompt the viewer to explicitly 
specify or query relevant properties of the data. Cleaning or de-noising 
of the data generally falls outside of the scope of these tools, although 
the EventFlow tool supports many of these operations [9]. Though 
these cleaning steps are noted as part of the analytical workflow, the 
utility and reuse of this clerical work has yet to be utilized as analytical 
provenance, such as to share and collaborate in an analytical environ-
ment. Heer, et al.’s work on graphical histories [5] shows the visual 
analytics potential for event stream simplification to create more se-
mantically-resonant views of a user’s design process. 

There has been long-evolving work in the database literature to 
support the rapid querying of event sequence data.  Many methods 
treat queries over these sequences as automata (cf. Gehani, et al. [3]), 
where query languages extend the traditional language of SQL to deal 
with more temporal-specific analysis contexts. Systems such as SASE 
[15] and Trill [2] support methods such as the pre-processing methods 
discussed within this work to re-emit de-noised data for analysis. 
Though such tools support targeted analysis, their support for explo-
ration is minimal and lack many human-centered advantages of the 
interactive interface of a visual analytics tool. 

There are several commercial offerings that support the analysis of 
log event data, including Google Analytics, Splunk, Microsoft 
StreamInsights, and MixPanel. A majority of the visualizations in 
these analytics platforms are simple distributions of events, and re-
quire the analyst to curate events or short sequences of interest. In par-
ticular, MixPanel’s “Funnel” focuses on the workflow of users and the 
rate of drop-out, but requires the manual curation of such funnels. 

There have also been several studies that have looked at how big 
data analysis has been performed in the enterprise. Kandogan and co-
authors [6] find that integration issues and a lack of a unified analytics 
language can hamper collaboration in analysis and notes that visuali-
zations are rarely used as part of analysis. Barik, et al. [1] find that 

Fig. 3. An example composition of pre-processing rules for an exemplar session of log events, using data from the Histogram Excel Add-in (Sec. 

5.1.2).  A set of repeated slider events is replaced by a single slider event, then the session is split when new data is loaded.  Finally, only ses-

sions containing a frequency event are selected for downstream analysis. 



 

analytical tools for exploring log and telemetry data in the enterprise 
are lacking, and technological methods of collaborating on analyses 
are meager, identifying a need for expansion into this space. 

Through the work presented herein, we provide characterization 
for log event data in order to support more targeted exploration. Log 
event data tends to share many qualities with “big data” analysis, and 
stands to immediately benefit from standardized methods for focusing 
the analysis and exploration [13]. 

5 D ISCUSSION  

Using these methods of pre-processing to focus log event data for log 
event analysis, we can minimize the clerical work required to clean 
data for analysis and provide downstream visual analysis with more 
semantically-resonant events. This focused data enables the use of 
event-driven functional reactive programming [14], supported by 
many visual analytics platforms. 

5.1 Case Studies 

These case studies primarily look at telemetry logs of various applica-
tions, where anonymized user actions are recorded and logged for the 
purpose of post-hoc analysis by the development team. We instru-
mented the pre-processing techniques ad-hoc for each case study us-
ing the Trill temporal query engine [2]. 

5.1.1 Hyperlapse Pro Telemetry 

Hyperlapse Pro is a publically-available Windows application devel-
oped at Microsoft Research to allow amateur videographers to create 
motion-steadied time-lapse videos [7]. Opt-in anonymous telemetry 
of use of the application is collected by the research team, who are 
curious about how users are using the Hyperlapse application in prac-
tice. Are people generally satisfied with the results? What sort of op-
tions do people select from processing? What leads users to save a 
generated Hyperlapse video? 

Although it is difficult to ascertain if users are satisfied with the 
results of the application, a save event occurring after a video pro-
cessed event implies that a user is satisfied enough to decide to save 
the processed video. We employed the third pre-processing technique 
of selecting sessions based on the criteria that a “Save project” event 
eventually follows a “Processing video” event. Based on this rule, we 
obtain two sets of sessions: those that saved a processed video, and 
those that did not. We chose to look at the event distribution within 
the sessions between these two sets, and found that a set of eight events 
tended to be overrepresented in the sessions that saved the video. 
Sensing a linkage between these events, we extended the comparison 
to trigram sets of sequences, and found these overrepresented events 
tended to reference one another in sequence, implying a wizard-like 
interface. In fact, the application is architected like a wizard, as shown 
in Figure 1. We discovered this structure purely by analyzing the logs. 

Looking at the event sequences within this focused group, we ob-
serve that many user sessions dropped out between picking settings 
and completing the Hyperlapse processing. To understand why, we 
can amend our pre-process rule to separate out those sessions that 
completed processing and those that did not, and use downstream 
analysis tools to see if any factors separate the two groups. In this data, 
however, we could not find any distinct sequence of actions or attrib-
utes that differentiated these two groups. 

5.1.2 Data Visualization Excel Add-Ins 

As noted in Section 2, one of our log file sources are from the Aguvue 
dataset. Many potential analysis questions are of a sequential nature: 
if a user runs into an error condition, are they able to eventually make 
a visualization? What differentiates users who successfully bootstrap 
themselves out of error conditions from those that quit? 

Similar to the pre-processing diagram in Figure 3, many repetitive 
slider events were found in downstream analysis. Adding a replace 
rule collapsed all slider events into a single, representative slider 
event. A tooltip event that was fired whenever the user hovered over 
an encoded shape was also removed from the analysis. To tackle the 

question about error bootstrapping, we selected those sessions that 
contained an error event—from that selection, we selected those ses-
sions that subsequently generated a successful visualization. 

6 CONCLUSION  

This work begins to create the foundation for the next iteration of vis-
ual analytics tools for log event analysis. Through the composition of 
pre-processing rules, downstream analysis can benefit from focused 
data, and collections of rules can be used as provenance to bolster sim-
ilar analyses in different contexts or to share with collaborators. 

Though we have described the interaction and feedback for meth-
ods for pre-processing log event data, we have yet to realize a gener-
alized prototype that works on many different types of log files.  In 
the near future, we hope to realize the generalized application of these 
techniques through a user interface, with comparisons visualized by 
the system to guide the analyst to create the appropriate pre-processing 
rules for their analysis task. We also hope to validate our approach by 
comparing against existing approaches, particularly in the utility of 
pre-processing rules as provenance and the iteration between pre-pro-
cessing the data and exploring the resulting data. 
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