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Abstract—Color is a common channel for displaying data in surface visualization, but is affected by the shadows and shading used to
convey surface depth and shape. Understanding encoded data in the context of surface structure is critical for effective analysis in a
variety of domains, such as in molecular biology. In the physical world, lightness constancy allows people to accurately perceive
shadowed colors; however, its effectiveness in complex synthetic environments such as surface visualizations is not well understood.
We report a series of crowdsourced and laboratory studies that confirm the existence of lightness constancy effects for molecular
surface visualizations using ambient occlusion. We provide empirical evidence of how common visualization design decisions can
impact viewers’ abilities to accurately identify encoded surface colors. These findings suggest that lightness constancy aids in
understanding color encodings in surface visualization and reveal a correlation between visualization techniques that improve color
interpretation in shadow and those that enhance perceptions of surface depth. These results collectively suggest that understanding
constancy in practice can inform effective visualization design.

Index Terms—I.3.7 Three-Dimensional Graphics and Realism - Color, shading, shadowing, and texture; Lightness Constancy;
Molecular Visualization; Surface Visualization; Visual Perception.
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1 INTRODUCTION

V ISUALIZATIONS often use color to encode scalar field data
on three-dimensional surfaces. Color is a powerful cue for

surface visualization as it can intuitively represent data within
the context of a surface. Visualizing data in context is especially
critical for surfaces such as molecules, where functional and
structural features provide a meaningful scaffold for understanding
charge, binding sites, protein-protein interfaces, and other data.

However, shading models used to render surfaces directly
impact color encodings: shadows and shading manipulate color
to convey depth, resulting in a conflict between representations
of shape and data. Surface features, like pockets and loops, often
hold interesting areas for exploration, but tend to be the most
deeply shadowed. Misinterpreting color encodings in these regions
adversely impacts a visualization’s effectiveness, but removing
surface shading impairs perceptions of surface depth and shape.
By understanding how visualization design influences how ac-
curately viewers can read colors from shaded regions, we can
design surface visualizations that better support both shape and
data comprehension.

Reading color-encoded scalar data from the surface of a
molecule requires matching colors against a legend or key. Be-
cause the image color of data on the surface depends on shadows
and shading, the apparent color of the data may not be the
same as the unshaded key color in the legend. In this work,
we explore how visualization design affects viewers’ abilities to
match shadowed image colors to the corresponding unshadowed
color in a key. In the real world, this task would be enabled by
lightness constancy—the ability of the visual system to use various
visual cues to disentangle color and shadow. Lightness constancy
is well studied in perceptual science, and a number of theories
and models exist explaining how different visual cues contribute
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to this ability. However, these models focus on explaining con-
stancy in real world or simple computer-generated scenes (see
Kingdom [1] for examples). They provide little guidance for how
mechanisms for interpreting surface colors may be affected by
the stylized or simplified techniques used to render interactive
complex surfaces in visualization. Lightness constancy is also
sensitive to a variety of visual factors: in studies, simply moving
from the real world to a virtual image has significantly impaired
constancy [2]. Techniques commonly used in visualization, such
as ambient occlusion lighting [3], may remove many visual cues
that theoretical work indicates are used for lightness constancy,
such as lighting direction [4].

In this work, we derive inspiration from prior research on
lightness constancy to understand how visualization design can
support the accurate interpretation of encoded data in surface
visualization. In a series of experiments, we measure color-
matching performance for molecular surface visualizations ren-
dered using ambient occlusion. We confirm that viewers can read
color encodings in shadow with some accuracy for the simplified
rendering methods often used in visualization, and that how the
surface is visualized directly influences the strength of this ability.
Specifically, the visualization techniques used to render a surface
can significantly improve or inhibit viewers’ ability to correctly
interpret shadowed colors. Our results point to a correlation
between techniques that enhance depth perceptions and improved
performance in interpreting shadowed colors. These results can
guide designers in creating surface visualizations that more ac-
curately depict shadowed data. They also illustrate trade-offs for
designing surface visualizations using color. Given the complex
and unfamiliar structures of molecular surfaces, we anticipate that
these results could be applied to visualizing surfaces in other
domains.

Contributions: We present six experiments that explore how
visualization design influences viewers’ abilities to accurately
interpret color-encoded data for molecular surface visualizations
using ambient occlusion. Our results confirm that viewers can
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Fig. 1: Our findings, exemplified by hydrophobicity data in the shadowed regions above, show that visualization design significantly
impacts viewers’ abilities to read data encoded on a surface. (a, b) Ambient occlusion surfaces support viewers in reading shadowed
data, which is improved by (c) directional shading. Conversely, (d) stylized shape cues may hinder this ability.

resolve color on visualized surfaces with some degree of accuracy
despite approximations in the illumination model. We present
further evidence that different surface visualization techniques,
when used in conjunction with ambient occlusion, can affect this
accuracy. We specifically find that adding directional lighting and
stereo viewing improve viewers’ abilities to read shadowed colors,
whereas suggestive contours hinder performance. These results
provide preliminary evidence of a correlation between techniques
that enhance depth perceptions and accurate interpretations of
shadowed data. A summary of results is presented in Figure 1.

1.1 Background
Visualization allows analysts to explore data in the context of a
surface by mapping visual representations of data on a rendering
of the surface itself. The resulting image combines a number
of different visual factors to support data analysis. The visual
system has several different constancy mechanisms that account
for variation in visual factors. Color constancy in particular allows
us to resolve colors under different lighting conditions and has
three principal elements [5], [6]: lightness constancy, hue con-
stancy, and saturation constancy. All three components can be used
to encode data along a surface [7]. Supporting their constancy
allows visualization designers to use these channels effectively.
In this work, we focus on lightness constancy as it allows the
visual system to account for luminance variations underlying the
shadows and shading that convey surface structure.

Perceptual psychology has established models to explain how
lightness constancy functions account for changes in illumination
in the real world [8], [9], [10], [11], [12], [13]. Existing theories
hypothesize that properties such as contrast ratios between light
and shadow [14], [15], shadow intensity [6], lighting intensity
[16], lighting direction [4], object colors and reflectance [15], [17]
and spatial cues [18], [19], [20], [21] may all contribute to the
brain’s ability to disentangle an object’s color from the lighting
used to illuminate it. For example, the visual system may identify
a luminance value in a scene as an “anchoring point,” such as
the lightest or average luminance value, and adjust perceptions
of all residual colors accordingly [1]. The brain may also adapt
to lightness differences in smaller spatial regions of a scene and
adjust perceptions to maximize these local contrasts, essentially
increasing the perceived dynamic range of the scene [16].

This prior work focuses on perceptual mechanisms, quanti-
fying constancy as a function of low-level visual features under
highly controlled conditions for both artificial and naturally-
occurring scenes. Studies of constancy in digital environments
generally use simple stimuli, such as two-dimensional images (e.g.
flat square planes or collections of randomly sized and colored
rectangles that form “Mondrians”) or checkerboards overlaid on
simple three-dimensional shapes (e.g. cubes [22], [23], [24] or
creased rectangular planes [25]). It is unclear how these find-
ings translate to surface visualizations, where complex surface
structures are often illuminated using approximated and stylized
lighting models (e.g. ambient occlusion).

Surface visualizations commonly use ambient occlusion [3]
to approximate global illumination Several properties of this
illumination model may inhibit or even remove visual cues that
are hypothesized to facilitate lightness constancy. For example,
many theories suggest that lightness constancy relies largely
on backcomputing color changes in a scene based on overall
lighting and reflectance properties [5]. This idea of “estimating
the illuminant” depends on the existence of measurable lighting
contributions, including direction and relative intensity. However,
ambient occlusion synthesizes equal light from all directions—
the resulting illumination is directionless and of uniform intensity.
This might inhibit lightness constancy and reduce viewers’ abili-
ties to interpret shadowed colors.

Additionally, most of what we know of constancy is based on
identifying grey-scale colors under differing levels of illumination
viewed under controlled conditions (see Kingdom [26] for a
survey of experiments considering color). In surface visualization,
color ramps are not grey-scale, but often communicate data values
through variation in hue, lightness, and saturation, and viewed
under a variety of conditions.

The measures generated by perceptual models are not focused
on providing feedback for designers; they model mechanisms of
the visual system operating over specific visual features. These
limitations make it difficult to apply these models to visualization:
it is unclear how they inform whether different designs will
sufficiently increase the effectiveness of a visualization. We do
not aim to model lightness constancy for surface visualization,
but instead we consider the effects of lightness constancy as a
measure of visualization effectiveness. We seek to understand
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how common visualization techniques influence how accurately
viewers interpret surface colors in shadow.

2 RELATED WORK

In this work, we focus on viewers’ abilities to distinguish colors
applied to molecular surfaces. While other encodings, such as
glyphs [27], [28] or textures [29], are sometimes used to convey
surface data, color is one of the most common encodings for
displaying data on these surfaces.

Molecules can be visualized in many different ways: as atomic
representations [30], stylized moieties [31], or functional surfaces
[32], [33]. In this work, we focus on solvent-excluded surface
models, which are commonly used in conjunction with color
encodings to display molecular data in a spatial context (see [29],
[34], [35] for examples). Data such as charge, binding affinity,
and machine learning results are projected across these surfaces
to increase the functional and spatial understanding of the dataset.
Color is often used to visualize this data in popular systems like
VMD [36], Pymol [34], and BioBlender [37]. While the structural
features of a solvent-excluded surface present visually interesting
aspects of the surface for such investigations, surface shadows
(which use grayscale color to convey depth) may be problematic
when using color to encode data. Recent efforts have explored
alternative techniques for visualizing heavily shadowed regions of
surfaces, such as opacity reduction [38] and volume segmentation
[39]; however, these methods focus only on deep pockets and
reduce the visual quality of the overall surface to emphasize these
pockets. Interactive techniques for exploring surfaces are also
problematic for shadowed data—viewers may incorrectly interpret
values obscured by shadow, making it difficult to accurately
identify interesting regions to explore.

Although shape and shadow complicate color encodings, they
are important for communicating spatial properties of a surface
(Fig. 2). Recent research in volume rendering has explored how
different shading models impact viewers’ depth perceptions in
visualization. Although they focus on volume visualization, the
studies provide useful general insight into surface perception. For
example, Lindemann and Ropinski [40] evaluated seven lighting
models to derive design suggestions for effective depth-based
rendering. More recently, Grosset et al. [41] demonstrated how
subtle changes to a depth cue (depth of field) can significantly
influence perceptions of a volume. Such research empirically
evaluates common design decisions to confirm how different
design choices impact perceptions of structural features in a 3D
visualization, but do not consider how these choices influence
perceptions of color or other visual encodings.

Ambient occlusion is commonly used to convey depth in
molecular surface visualizations in both research [27], [42] and
production tools [34], [37]. Ambient occlusion approximates shad-
ows on a surface by assuming a constant light emitted from all di-
rections, measuring the percentage of possible lighting directions
visible from a given surface point, and attenuating the surface
color at that point accordingly [3]. This provides a pre-computed
approximation of shadow that conveys depth comparable to di-
rectional lighting models [43]. Yet, it often fails to convey subtle
shape variations and is therefore often supplemented with other
shape and depth cueing techniques such as diffuse illumination
[42], contours [27], [42], and haloing [42] in molecular surface
visualization.

(a) (b)

Fig. 2: Depth perception of a surface using (a) local illumination
can be greatly enhanced by (b) adding ambient occlusion shading,
which emphasizes the shape of structural features such as pockets.

In this work, we explore lightness constancy for molecular
visualizations that leverage color encodings. We specifically fo-
cus on how visualization design influences constancy to support
accurate performance on a color matching task. While the en-
suing studies measure viewer performance on solvent-excluded
molecular surfaces, we anticipate that the findings of this study,
summarized in Figure 3, are extensible to visualizing of more
general classes of surfaces.

3 MOTIVATION AND OVERVIEW

The way we represent data directly influences how accurately
viewers interpret visualized data. For example, the rendering
methods used to create a volume visualization impact perceptions
of surface depth [40]. In visualization design, there is often a trade-
off between how closely a visualization reflects the real world
and how efficiently it can be rendered. We may choose to make
this trade-off for many reasons, such as supporting interactivity,
rendering on devices with different computational resources, or
emphasizing certain properties of an object. By understanding how
different visualization design choices influence how accurately
visualized data is perceived, designers can systematically reason
about these trade-offs to create visualizations that support specific
tasks.

In this paper, we explore how different design techniques
for visualizing surface data influence how accurately viewers
interpret shadowed data. We focus on visualizations rendered with
ambient occlusion as it is commonly used to convey surface depth
and shape without the computational overhead of more complex
shadow rendering techniques. Ambient occlusion computes the
shading values for a surface once, and those values remain
constant regardless of viewpoint. It exchanges many aspects of
real world lighting captured by more complex global illumination
models (e.g. interreflection in radiosity, lighting direction from
cast shadows), which must be recomputed whenever the light or
surface are moved, for computational tractability. This trade-off
can improve performance for interactive visualizations.

Ambient occlusion supports perceptions of surface depth using
shading to simulate shadows. When a data value is encoded
as color on an ambient occlusion surface, shading makes the
pixel value of the image color on the surface darker than the
original encoded color. For shadowed objects in the real world,
lightness constancy enables viewers to disentangle colors from
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Fig. 3: We explore how visualization design influences viewers’ abilities to accurately read shadowed colors in surface visualization.
We first verify that viewers can interpret shadowed colors on ambient occlusion surfaces and that surface shading and structure supports
this ability. We then explore how different surface visualization techniques might improve or impair performance. These results can
help inform the design of effective surface visualizations.

shadow. Many properties of more complex global illumination
models are known to contribute to these constancy effects, such
as directional lighting, cast shadows, or interreflectance of light
along the surface. Given the prevalence of ambient occlusion in
surface visualization, we want to understand if this lighting can
support accurate color interpretation in shadow and what aspects
of visualization design influence these effects for surfaces rendered
with ambient occlusion.

The studies presented here represent first steps in this explo-
ration. The goals of this work are to (a) establish that viewers can
accurately read shadowed surface colors from ambient occlusion
surfaces, and (b) reason about the trade-offs in this ability for
common surface visualization designs. We address these goals by
answering six specific research questions (addressed in studies S1
through S6). Like Anderson and Winawer’s approach to analyzing
the causes of constancy [44], we consider how different design
layers—visualization design decisions that influence the presenta-
tion of a surface—may influence performance on a color matching
task. We begin by verifying that ambient occlusion surfaces can
support lightness constancy effects (S1) and that these effects are
a function of visualization design rather than contrast between
data and shadow (S2). This verification suggests that viewers can
interpret shadowed data with some accuracy and that the design
of a visualized surface may influence this ability.

Once these properties are verified, we then explore how the
shadow computation itself influences performance (S3). Specifi-
cally, we show that some simplifications of shadow models may
hinder the interpretation of shadowed colors.

The ability to correctly estimate the luminance of shadowed
surface colors is imperfect: viewers still make more errors in
interpreting shadowed surface colors than unshadowed colors.
However, we find that performance in color matching tasks is still
higher when luminance cues are included in the color mapping
than for hue and saturation alone in common practice color ramps
(S4).

Surface visualizations often combine other visualization tech-
niques with ambient occlusion to enhance perceptions of the depth
and shape of a surface. In order to understand the trade-offs in-
volved in these design decisions, we compare viewers’ abilities to
interpret shadowed colors when adding directional lighting, stereo
cues, and suggestive contours. Our results suggest that designs
correlated with depth cueing (directional lighting and stereo) allow
viewers to more accurately identify shadowed surface colors (S5),
while stylized contours, which enhance shape percepts at the
expense of shadow percepts [45], reduce performance (S6).

These studies, discussed in detail in the ensuing sections,
collectively suggest that visualization design influences how well
viewers’ can read surface colors, and that there is a correlation
between designs that support perceptions of surface depth and
those that effectively convey shadowed data. A summary of
results is provided in Table 1. This work serves as first steps in
mapping a design space for understanding lightness constancy in
visualization.

4 GENERAL METHODOLOGY

We evaluated the relationship between color matching perfor-
mance and surface visualization design through a series of color
matching experiments. Each experiment required participants to
match a data value encoded as color on a surface to its original
ramp color in a provided key. All experiments followed the
same general procedure. Any variation from this methodology is
discussed in detail for each experiment. The manipulated design
component was treated as a between-participants factor in all but
one experiment (§7.2).

Participants were first screened for color vision deficiencies
using digital renderings of Ishihara plates [46]. Only participants
who passed this screening were allowed to proceed, and a post-
hoc questionnaire was used to further verify normal color vision.
Participants were instructed that they would see a series of images
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Fig. 4: We mapped colored patches to three levels of shadow.
Colored patches applied to molecular surfaces rendered using am-
bient occlusion gauged performance for molecular surfaces (top),
whereas 2D squares (bottom) measured effects due to contrast
with the surrounding shadow.

with colored patches placed under different levels of shadow and
would be asked to match the original color displayed in the image
to a provided key. A pair of example problems were provided to
help illustrate the task. Participants were then shown 32 500×500
pixel stimulus images presented in a random order with the cor-
responding seven-step color ramp key immediately to the right of
the stimulus (Fig. 4). Participants recorded the color in each ramp
they felt best corresponded to the shadowed patch by clicking
on a color in the key and clicking a “Submit” button to move
to the next stimulus. To mitigate adaptation effects, participants
saw a gray screen for three seconds between respective stimuli
(duration was selected through pretesting). Participants were given
unlimited time for each response.

4.1 Stimulus Generation

Unless otherwise stated, stimuli consisted of static images of
solvent-excluded surfaces rendered as a white surface on a black
background. Surfaces were shaded using ambient occlusion plus a
10% constant ambient term. Shadows were generated by reducing
surface luminance using ambient occlusion computed using the
methods described in Landis [3] by attenuating the luminance
component of the surface assuming a white light and a gamma
of 2.2 [47].

Surfaces were derived from four different proteins from the
Protein Data Bank [48] (PDB IDs: 1BBH (bacterial), 1B7V
(bacterial, Fig. 1, 4, 9, and 3), 1DB4 (human, Fig. 2), 3CLN
(mammalian, Fig. 11) and generated via MSMS [49] with each
surface visualized entirely within the image. Since the experiments
were conducted in the browser, all images were prerendered with
sRGB embedded color profiles.

A single colored patch was mapped to a unique position on
each surface for each shadow level. Patches were of roughly
equivalent size on each surface—some variation was caused by
the curvature of the surfaces—and never directly bordered the
black background. For each experiment, patches were generated
for three levels of shadow: light (25% ± 2% shadow), medium

(50% ± 2% shadow), and dark (75% ± 2% shadow), with
all shadow levels measured after the 10% ambient lighting was
applied. Patches were placed in shaded regions where no part of
the region was lighter than the assigned shading level and at least
94% of the region was within the assigned shading level.

Each participant saw colors from two seven-step color ramps.
To control the number of stimuli viewed by each participant, we
selected three colors from each ramp as test colors to be displayed
in shadow. Tested colors were selected such that each color was at
least one just noticeable difference (JND) apart even in the darkest
shadow condition. Throughout this work, we use the JND measure
defined using crowdsourced metrics in [50] to help account for
anticipated display variability.

Except in the stereo pilot (§7.2), each participant saw 32
stimuli total: six stimuli at each of the three shadow levels
(three colors per ramp) and 14 stimuli with patches placed in
an unshadowed position (one for each level of each ramp) for
validation and to prevent biased responses from the reduced set of
colors in the shadow conditions. The primary manipulation was
a between-participants factor for all but the stereo study. Images
were selected randomly from each of the four surface models,
and the stimuli were presented in a random order to minimize
adaptation to a given color or shadow level. The use of validation
stimuli with “obvious” correct answers (in this case, the exact pixel
match to the surface patch) is commonly used to gauge honest
responses in crowdsourced studies, where participants sometimes
“click-through” questions using random answers to complete the
study as quickly as possible [51]. Participants responding two
or more ramp units away from the correct answer on multiple
validation stimuli were excluded from our analyses.

4.2 Participant Selection

Participants were selected from two separate pools: in-person (20
participants total) and crowdsourced using Amazon’s Mechanical
Turk (322 participants total). Mechanical Turk is known to be a
generally reliable participant pool for graphical perception studies
[51], [52] and also allows us to measure performance for viewers
under a spectrum of real-world viewing conditions. This approach
may introduce variability in viewing conditions and devices, which
prevents us from making precise claims about visual perception.
We hypothesize that this variability may be beneficial for measur-
ing factors significantly influencing performance under realistic
conditions, but leave this verification to future work. To ensure
the quality of our results, we followed known best practices for
ensuring honest responses [53], only recruited participants with at
least a 95% overall “approval” rating, and used explicit validation
questions. We also tracked both worker identification number and
IP address across all experiments to ensure that each participant
completed only one experiment.

We recruited 16 in-person participants (10 female, 6 male)
between the ages of 21 and 31 (µ = 25.75, σ = 2.47) to ad-
dress S1 and S2 under controlled conditions. We then recreated
these experiments using crowdsourced participants on Amazon’s
Mechanical Turk. We found consistent results between in-person
and crowdsourced participants, confirming that crowdsourcing is a
sufficiently reliable method for recruiting participants for our color
matching task. We addressed S1 through S6 using a cumulative
total of 322 crowdsourced participants (174 male, 147 female, 1
declined to report) between the ages of 18 and 65 (µ = 31.25,
σ = 9.66).
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Certain visualization conditions are not amenable to crowd-
sourcing, such as stereo viewing (S5), which requires specialized
displays. For our stereo experiment, we also required participants
to have prior stereo experience due to the nuances of proper
stereo viewing with the available technologies. We recruited 4
participants with prior experience with stereo displays for pilot
study S5. We present preliminary findings from this study, but
consider it a pilot as we were only able to recruit a limited number
of participants, all with some familiarity with our task, due to our
qualification restrictions.

We analyzed our data for each experiment (except S1) for
main and first-order interaction effects at the level of shadow
× color ramp × primary independent variables using ANCO-
VAs (Analyses of Covariance). Question order was treated as a
covariate to account for interparticipant variation from repeated
measures across conditions. In all cases, results from each par-
ticipant pool were analyzed independently, and an equal number
of participants were considered for each condition within each
experiment. If exclusions caused an imbalance between conditions
within an experiment, participants were excluded at random until
both conditions were balanced. Across all studies, only data from
participants who reported normal or corrected-to-normal vision
and no color vision deficiencies was considered. We observed no
significant performance effects due to age.

5 VERIFYING LIGHTNESS CONSTANCY FOR SUR-
FACES

5.1 Do we see constancy effects for ambient occlusion
surfaces? (S1)

Before exploring color matching performance as a function of
design, our first experiment aims to verify that participants can
match image colors to a key when the colors are darkened by am-
bient occlusion shadows. If these visualizations support lightness
constancy, we would anticipate that viewers would match colors
closer to the original, unshadowed color than to the darkened pixel
color in the image.

Methods: The procedure and stimuli for this experiment are
outlined in §4. We carefully engineered two luminance-varying
ramps such that, for each tested color, both the correct key color
and the pixel value of the shadowed image color could be mapped
to within one crowdsourced JND of a ramp color. These ramps
allowed us to verify that the participants were able to employ
lightness constancy in order to disambiguate between the pixel
value of the shaded patch and its corresponding ramp value. Ramp
luminance was varied in the CIELAB color space from L∗ = 9
to L∗ = 87, with each step separated by 13 units and L∗ = 35,
L∗ = 61, and L∗ = 87 used as test colors (Fig. 4). We centered the
ramps around blue and red such that all colors remained within the
monitor gamut and consecutive colors were sufficiently different.
Each participant saw 16 stimuli from each ramp, resulting in 32
total responses per participant.

Participants were drawn from two pools: 8 in-person partic-
ipants to measure constancy effects under controlled conditions
and 17 crowdsourced participants from Mechanical Turk to mea-
sure effects under the diverse array of conditions experienced in
visualization applications. Two crowdsourced participants were
excluded from the analysis for poor performance on validation
stimuli, resulting in 15 participants total for our analysis. Partici-
pants completed the in-person study using an Asus G51J Series
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Fig. 5: Mean difference between the correct patch color and partic-
ipant responses in S1. Both in-lab and crowdsourced participants
mapped shadowed colors significantly closer overall to the original
key color than to the shadowed pixel value in the image. All error
bars encode standard error.

Laptop with an NVidia GeForce GTX 260M graphics card in
full screen using Google Chrome. Room lights were dimmed to
control ambient illumination.

Results: Performance was measured as the difference between
the correct key color and the color reported by participants. We
use this metric rather than absolute correctness because constancy
is an approximate phenomena—even in real scenes, constancy
mechanisms cannot always exactly compute the correct color
[54]—“right” or “wrong” measures do not adequately capture
performance. Figure 5 summarizes our results.

A repeated measures Multivariate Analysis of Variance
(MANOVA) on each set of participants revealed evidence of
significant constancy effects. There was a significant difference
between colors reported by participants and the actual shad-
owed surface colors (Fin−person(1,45) = 19.7818, pin−person < .0001;
FTurk(1,93) = 29.9981, pTurk < .0001). Participants mapped shad-
owed patches to significantly lighter colors than the surface
pixel color. This result was consistent across all shadow lev-
els (Fin−person(2,45) = 130.4005, pin−person < .0001; FTurk(2,93) =
141.2638, pTurk < .0001). We did not find a significant difference
between response errors at the three tested shadow levels in the
in-person experiment (F(2,45) = 1.3754, p = .2566) and between
the light and medium shadows in the crowdsourced experiment
(F(1,45) = 1.4694, p = .2264). This lack of difference also in-
dicates constancy effects—participants mapped these patches to
roughly equivalent colors despite significant changes in shadow
darkening. Overall, the performance of the crowdsourced par-
ticipants was consistent with in-person participants. However,
crowdsourced participants performanced slightly worse on the
darkest shadow conditions.

These results collectively suggest that participants can account
for the effect of shadows on surface colors. Participants matched
surface colors to colors significantly lighter than the pixel value
of the shadowed image color, and darker shadows did not always
influence the apparent color (Fig. 5). The consistency of these
results across both in-person and crowdsourced conditions point
to the robustness of this phenomena across viewing conditions
and suggests its importance for visualization design. However, our
results also suggest there may be room for improvement: there
was still significant error in matching surface colors to the original
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Fig. 6: Viewers identified colors more accurately on surfaces
than on dimmed two-dimensional planes (S2), suggesting that
visualized surface structure plays a role in identifying shadowed
colors.

colors, and this error might be improved by different visualization
techniques.

5.2 Do viewers use structural information to interpret
surface colors? (S2)

Our results from S1 demonstrate that participants correctly iden-
tify shadowed image colors as lighter than the corresponding
pixel color. However, these results do not confirm the cues the
visual system uses to interpret these colors. It is possible that the
darkness of the shadow surrounding a patch allows participants
to interpret image colors rather than structural information from
the visualization. Simultaneous color contrast between a stimu-
lus and the surrounding shadows accounts for some aspects of
lightness constancy in the real world [14], [16], although it is
insufficient to explain all constancy effects in three-dimensional
surfaces [21]. The visual system may normalize contrast for
local windows around a patch at comparable depth plane [1],
[55]. For visualizations, contrast between the patch color and the
surrounding shadows may cause the local color patch to appear
lighter than its actual pixel value—the dark shadow makes the
patch appear lighter by contrast. In this experiment, we wanted to
verify that contrast does not account for all of the effects reported
in Section 5.1. If contrast sufficiently explains the S1 results, how
we visualize a surface will not significantly influence perceptions
of shadowed colors.

To test if the observed constancy effects were due to simultane-
ous contrast, we compared color matching on visualized surfaces
to two-dimensional “shadowed” patches. If the effects from the
surface color matching task (§5.1) are due to contrast, we would
expect no significant difference between color perception for 2D
shadows and 3D surfaces. This would imply that performance
depends on the darkness of the surrounding shadow rather than
the overall visualization design.

Methods: 2D stimuli consisted of 100 pixel-wide colored square
patches centered in a 500 pixel-wide white square. Patch size
was comparable to the 3D surface patches. Both the patch and
background square were dimmed to the tested shadow level
to mimic the local lighting on a molecular surface—the white
background was dimmed to the grey of the surface shadow to
indicate the lighting shift, and the colored square was dimmed to

the color of the shadowed patch (see Fig. 4, bottom). Participants
were instructed that both patch and background were in shadow
and that they were to identify the original, unshadowed color of
the center patch. In order to simplify task instructions, 2D stimuli
were not placed on a black background. As colored patches were
generally placed far from the background in the 3D condition,
we do not anticipate any confounds from this decision: contrast
effects in constancy are speculated to operate over local windows
within a visual scene [55].

Colors, shadow levels, general procedure, and stimulus distri-
bution mirrored the 3D condition described in the previous section,
including 14 unshadowed 2D validation stimuli (§5.1). Data was
again collected from two participant pools: 8 in-person partic-
ipants and 18 crowdsourced participants. Three crowdsourced
participants were excluded for poor performance on validation
stimuli, resulting in 15 participants for analysis. Both sets of
participants were run simultaneously with those discussed in §5.1,
with dimension treated as a between-participants factor.

Results: We ran a three-way ANCOVA (dimension, color ramp,
and shadow level) on the difference between the original color
and response color for the 2D planes and the 3D data from
S1 for each participant pool. Participants matched colors on
3D surfaces significantly more accurately than on equally dark-
ened 2D patches (Fig. 6, Fin−person(2,262) = 13.3018, pin−person =

.0003; FTurk(1,532) = 23.9261, pTurk < .0001). This accuracy
varied significantly across shadow level (Fin−person(1,262) =

19.5687, pin−person < .0001; FTurk(2,532) = 74.6342, pTurk < .0001),
but not across color ramp (Flab(1,262) = .2160, plab = .2160;
FTurk(1,532) = 0.1031, pTurk = .7483).

These results suggest that the effects measured in S1 (§5.1) are
not entirely explained by simultaneous contrast: visualized surface
structure accounts for a significant proportion of the reported color
matching performance.

5.3 Does approximating shadow darkening affect color
matching performance? (S3)

Correct ambient occlusion shadows render shading by attenuating
the amount of light emitted by the display linearly with the amount
of shadow. However, a designer may also approximate shading by
darkening the surface using an image post-process, which may
not account for non-linearities introduced by device gamma. The
difference is subtle: because image processing occurs in device-
dependent RGB, the shadows would be differently affected by
gamma correction (Fig. 7). While the magnitudes of these changes
are small, they distort the gradients of the resulting shadows,
which may contain important information for constancy [56].

While modern visualization systems generally apply shadows
correctly, the effects of subtle differences in shadow application
provide evidence of the connection between perception theory
and visualization practice. Namely, distorting these gradients may
reduce performance on our color matching task. Given the subtle
visual difference between the two conditions, a performance dif-
ference on our tested task would imply that perceptions of shadows
and surface structure influence the apparent color of surface data.

Methods: We replicated the previous experiments (§5.1 and §5.2)
using stimuli that applied ambient occlusion attenuation to each
channel of device-dependent RGB color (γ = 2.2). The lumi-
nance of all corresponding correct and image-processing darkened
colors were within one L∗ JND measured under crowdsourced
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(a) Hydrophobicity data with correct shadows

(b) Hydrophobicity data with image-processing shadows

(c) Color differences mapped to greyscale

Fig. 7: Differences in CIELAB ∆E between correct and image-
processing shadows for the surface visualized in Figure 1b. Color
difference is encoded using linear greyscale, with black represent-
ing areas of no difference.
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Fig. 8: No significant improvements were seen between dimmed
planes and surfaces darkened using non-gamma corrected image-
processing methods. This suggests that constancy mechanisms
leverage shadow information when processing surface colors (S3)
and small changes to those shadows can damage their effects.
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Shadows
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Performance for Dark Shadows, Blue Ramp

Actual Pixel Color

Fig. 9: Molecular visualizations using standard ambient occlusion
demonstrated the best color identification performance. The lack
of a significant difference between 2D dimmed patches and 3D
surfaces using image-processing darkening suggests that the visual
system actively uses shadow information to extract shadowed
surface colors.

conditions [50]. Dimension (2D versus 3D) was treated as a
between-participants factor. The procedure otherwise mirrored
that described in §4.

The study was run simultaneously with the crowdsourced stud-
ies discussed in Sections 5.1 and 5.2. We collected data from 34
participants on Mechanical Turk. Three participants were excluded
from the 2D condition and one from 3D surfaces condition for
performance on validation stimuli, resulting in 15 participants per
condition for analysis.

Results: To address S3, we compared participant responses
across all four crowdsourced conditions (dimmed 2D patches
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from Section 5.2, 3D surfaces from Section 5.1, image-processing
darkened 2D patches, and image-processing darkened 3D sur-
faces). A four-way ANCOVA (dimension, shadow level, darkening
type, and color ramp) was used to analyze participant responses.
Participants identified colors significantly more accurately on 3D
surfaces than 2D planes (F(1,1061) = 18.4228, p< .0001). Shadow
level significantly influenced performance (F(2,1061) = 160.0194,
p < .0001), but we found no significant effect of color ramp
(F(1,1061) = 1.2035, p = .2729), and only a marginal main effect
for darkening type (F(1,1061) = 3.8011, p = .0515). We also
found a significant interaction effect of dimension and darkening
type (F(2,1061) = 5.5637, p = .0185, Fig. 8). A Tukey’s Test of
Honest Significant Difference (HSD) found no significant differ-
ence between performance in both 2D conditions and the image-
processing darkened surfaces, but revealed that correct shadowed
surfaces outperformed all other conditions (at α = .05).

These results suggest that precise shadow information facil-
itates data interpretation along a surface. While we found no
performance differences for 2D planes, incorrect shading sig-
nificantly decreased color matching performance on molecular
surfaces despite the subtlety of the visual differences between the
displayed images (Fig. 9). Incorrect shadows may communicate
surface structure, but may not be sufficient to support constancy
mechanisms in interpreting encoded data—we found no evidence
that incorrect shadows provide any performance gains beyond
what 2D shadows provide. These findings also suggest that vi-
sualization design decisions that manipulate surface shading may
influence viewers’ abilities to correctly interpret surface data in
visualization.

6 DO CONSTANCY EFFECTS PRESERVE PERFOR-
MANCE GAINS FROM LUMINANCE VARIATION? (S4)
In practice, well-designed color ramps integrate luminance vari-
ation with other color cues (see Moreland [57] for a discussion
of color ramp design considerations). Luminance is a strong cue
for identifying colors in visualization; however, shadows compress
luminance variation in surface visualization. Lightness constancy
effects must sufficiently preserve luminance variations in shaded
regions for luminance-varying ramps to retain their performance
benefits over isoluminant ramps. While §5 provides empirical
evidence that some of these cues can be preserved, it does so
using carefully engineered ramps that strictly use luminance cues
in order to gauge subtle effects. In this experiment, we compared
three commonly-used ramps that integrate luminance variation
with their isoluminant equivalents to determine if luminance cues
are beneficial for color ramps used to encode data on ambient
occlusion surfaces.

Methods: Stimuli were constructed as discussed in §4, with any
colors outside sRGB gamut [47] clamped via chroma reduction.
Color ramps consisted of a purple-white-green (PWG) and red-
yellow-blue (RYB) diverging ramp from ColorBrewer [58] and a
rainbow ramp (Ra) akin to that used in PyMol [34]. As opposed
to the red and blue luminance-varying ramps from the previous
experiments, these ramps represent common practice color choices
for surface visualization—the ColorBrewer ramps represent gen-
eral good practice for data encoding, while the rainbow ramp
provides an example of extreme hue variation that is used in
practice but suffers from several known limitations [59], [60].

The isoluminant variations of these ramps were computed by
setting the CIELAB L∗ values of the ramps to L∗ = 65, near the
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Fig. 10: Luminance-varying ramps supported significantly better
performance than their isoluminant equivalents, suggesting that
lightness constancy helps viewers interpret data encoded with
well-designed color ramps (S4).

average luminance of all ramp colors. While the distance between
colors is reduced in the isoluminant ramps, this reduction is only in
lightness. As a result, we can gauge if lightness constancy effects
are sufficient to preserve the luminance cues in the original ramps.
To control for this compression, we verified that consecutive
color steps within each ramp differed by at least three times our
benchmark JND [50]. A pilot identified three sample values from
each ramp as potentially misidentified colors to be used as test
colors: dark purple, light purple, and mid-green for PWG; orange,
red, and mid-blue for RYB; and orange, cyan, and purple for Ra.

The experimental procedure was identical to that described
in §4, with luminance treated as a between-participants factor.
Each participant saw colors from one isoluminant ramp and a
different luminance-varying ramp (PWG with isoluminant RYB,
Ra with isoluminant PWG, and RYB with isoluminant Ra). Data
was collected from 92 participants on Mechanical Turk. One
participant was excluded from each of the PWG/isoluminant RYB
and the RYB/isoluminant Ra condition for performance on the
unshadowed validation stimuli, resulting in 30 participants per
condition for analysis.

Results: As the difference between consecutive colors varied
between ramps, we used the number of ramp units between the
original and response color as our primary measure and absolute
correctness as a secondary measure (Fig. 10). Since a direct
mapping exists between the isoluminant and luminance varying
ramps, our primary measure uniformly quantifies performance
differences between ramps despite the fact that this difference is
not necessarily uniform in color space.

We analyzed the primary measure using a three-way ANCOVA
(luminance variance, shadow, and ramp). Overall, luminance-
varying ramps significantly outperformed isoluminant ramps
(F(1,1664) = 23.5519, p < .0001). Performance varied signifi-
cantly across shadow level (F(2,1664) = 53.8479, p < .0001), and
color ramp (F(2,1664) = 47.0705, p < .0001). Both PWG and
Ra ramps significantly outperformed their isoluminant equivalents
(FPWG(1,1664) = 17.3171, pPWG < .0001 and FRainbow(1,1664) =
9.1601, pRainbow = .0025). While RYB outperformed isoluminant
RYB on average, the difference was not significant (F(1,1664) =
1.4980, p = .2211).

Our results suggest that performance gains from luminance
variation in well-designed ramps are preserved for ambient oc-
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AO Plus Camera Diffuse Lighting AO Plus Suggestive Contours

AO Plus Upper Left Diffuse LightingAmbient Occlusion

Fig. 11: We measured how design influences viewers’ abilities
to interpret shadowed colors using three additions to ambient
occlusion from the molecular visualization literature: diffuse local
lighting (both sourced at the camera and in the upper left) and
stereo viewing to enhance depth, and suggestive contours to
enhance shape.

clusion surfaces. This performance gain implies that lightness
constancy matters in practice for surface visualization—luminance
is a strong color cue; if we can create designs that better support
lightness constancy, we can improve visualization effectiveness.

7 AFFECTS OF DEPTH AND SHAPE CUES

Our results indicate that lightness constancy may enhance the
apparent color of surface data on molecular surfaces rendered with
ambient occlusion. Our first three studies (S1–S3, §5) suggest that
the spatial cues created on a surface by ambient occlusion shading
support participants in accurately matching surface colors to a
key. Ambient occlusion provides both shape and depth cues. Both
may enhance perceptions of surface structure, but previous work
shows that these factors may influence performance on our color
matching task in different ways [54].

Molecular surface visualizations often supplement ambient
occlusion with other rendering techniques that provide additional
structural cues. Adding depth cues to ambient occlusion surfaces
can improve depth perceptions [61], but is unclear if these added
cues will significantly increase color identification performance
[56]. Strict shape cues can damage the abilities of viewers to infer
shape from shading for a surface rendering [45], which our results
from S3 suggest may, in turn, reduce performance. In this section,
we compare three techniques commonly used in conjunction with
ambient occlusion to enhance depth and shape cues in molecular
visualization: directional lighting [62], stereo viewing [34], and
suggestive contours [42] to test how depth and shape cueing affect
participants’ abilities to interpret surface colors (Fig. 11).

7.1 How do added depth cues from directional lighting
affect color matching performance? (S5)

Local directional lighting is commonly used to supplement am-
bient occlusion in molecular surface visualization. This provides
an estimable lighting direction and increased depth cueing, both
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Fig. 12: Adding directional lighting to ambient occlusion signif-
icantly improved viewers’ ability to identify colors in shadow;
however, this improvement appears to be correlated with the
amount of depth cueing (S5) provided by the lighting direction.

of which may enhance constancy effects over ambient occlu-
sion alone [4], [19]. We anticipate that adding local directional
lighting may improve color matching performance for surface
visualization. However, this improvement might depend on the
position of the light source, which influences how significantly
the added lighting improves depth perceptions [63]. We explored
the relationship between local directional lighting and constancy
effects using light sourced at two positions: from the upper left
where it is strongly correlated with depth perceptions and from
the camera where it provides substantially less depth cueing.

Methods: Stimulus images were generated as described in §4.1,
with colors drawn from the seven-step red luminance-varying
ramp (§5.1) and purple-white-green diverging ramp (§6). We
generated two stimuli collections, each consisting of one set of vi-
sualizations using ambient occlusion alone and a corresponding set
using ambient occlusion plus a directional light. The directional
light was positioned at the camera in the first collection and to
the upper left of the molecule in the second. Surface patches were
slightly displaced from the previous experiments and between each
collection to account for variation in shadow introduced by the
directional shading, but patch placement was identical within each
collection.

Supplementing ambient occlusion with directional lighting
could cause surfaces to be significantly lighter than with ambient
occlusion alone. This would potentially confound our experiment:
superior performance of directional lighting may be caused by
lighter shadows rather than structural cues introduced by direc-
tional lighting. To avoid this confound, we implemented direc-
tional light as diffuse shading and computed surface shading using
the equation A = 0.5 ·ao+0.5 ·ao · (l̂ · n̂), where ao is the ambient
occlusion value, l̂ is the unit vector from the center of the molecule
towards the light source and n̂ is the unit normal. This model
bounds the surface shading such that the directional plus ambient
occlusion surface shading is never lighter than the raw ambient
occlusion values.

The experimental procedure was otherwise identical to that
described in §4. Each participant saw 32 stimuli from exactly
one lighting condition. Data was collected from 108 participants
on Mechanical Turk. Two participants were excluded from the
upper left lighting condition and three from each condition in the
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camera-sourced lighting collection for performance on validation
stimuli, resulting in 25 participants per condition.

Results: We ran a three-way ANCOVA (shading model, shadow,
and ramp) on the differences between the original color and
participant responses for each stimulus collection (Fig. 12). We
found significant main effects of shadow (Fupperle f t(1,801) =

76.1552, pupperle f t < .0001; Fcamera(1,676) = 59.7345, pcamera <

.0001) and ramp (Fupperle f t(1,801) = 10.4646, pupperle f t = .0013;
Fcamera(1,676) = 10.4646, p = .0013). Surface visualizations with
directional lighting supported significantly better color judgments
than ambient occlusion surfaces alone when the light was posi-
tioned to the upper left of the molecule (Fupperle f t(1,801) = 7.1918,
pupperle f t = .0075). Adding camera-sourced directional lighting
also improved perceptions on average, but the difference was not
significant (F(1,676) = 1.4369, p = .2311).

These results indicate that enhanced depth cues may be more
important to interpreting color-coded data along a surface than
lighting direction: lighting sourced to the upper left of a surface
provides both better depth cueing [63] and greater color matching
performance than lighting sourced at the camera. Artificially
bounding shading in the directional lighting conditions makes
shadows generally darker than in the baseline ambient occlusion
condition. Therefore, we anticipate that effects seen in this exper-
iment will likely increase in practice without this bound.

7.2 How do added depth cues from stereo viewing af-
fect color matching performance? (S5)

The previous experiment provides evidence that enhancing depth
cues may increase how accurately participants interpret color-
coded information on a surface. Stereo viewing also increases
depth cueing and is supported by many commercial molecular
visualization packages [34]. Experiments in psychology have
found that binocular stereo cues may improve constancy effects
[64], [65]; however, these studies are based on simple stimuli
and do not use commercial stereo devices. We anticipate that
stereo depth cues might improve participants’ abilities to correctly
identify color on surfaces, but it is unclear if other tradeoffs made
by stereo viewing, such as reduced color fidelity, will outweigh
these effects in practice.

Methods: We tested stereo viewing using a within-subjects pilot
study on a passive stereo display (Zalman Trimon ZM-M220W).
Two stimulus sets were generated: one consisting of row interlaced
stereo visualizations and another with the corresponding monocu-
lar images. All stimuli assumed a uniform interpupillary distance.
Participants were initially screened for stereo blindness and then
shown a sample stereo molecule and asked to adjust their position
until the object appeared as a continuous, three-dimensional shape.
The procedure was otherwise identical to that described in §5.1.
Participants wore polarized stereo glasses through the entirety of
the study in both the stereo and monocular conditions.

We compared stereo and monocular viewing in an in-person
pilot with four participants. Because stereo viewing relies on
proper display technologies and is highly sensitive to a number
of parameters, we required participants to have prior experience
with stereo viewing. This constraint limited the number of par-
ticipants we were able to recruit. To help account for the limited
number of participants in this study, we doubled the number of
shadowed stimuli seen by each participant (each participant saw
each shadow condition twice per tested color) and treated stereo
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Fig. 13: Surface color perceptions improved when molecular
surfaces were supplemented with binocular depth cues (S5).
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Fig. 14: Enhancing shape using contours resulted in marginally
decreased performance over ambient occlusion alone (S6).

and monocular viewing as within-participants factors. Stereo and
monocular viewing were blocked, with participants waiting at least
24 hours between each block to mitigate learning effects. While
the size of this pilot limits the statistical power of our results, we
did find significant results that we believe offer initial insight into
the influence of stereo vision on constancy effects.

Results: We found preliminary evidence of a performance
benefit of stereo viewing over monocular viewing (µstereogain =
2.73∆E ± 1.04, 95% confidence interval). While we found no
evidence of a benefit for the darkest shadow level (µstereogain =
0.03∆E± 1.75), we did find evidence of significant performance
improvement for medium (µstereogain = 6.88∆E ± 2.01) and light
(µstereogain = 1.28∆E±0.66) shadows.

Surfaces viewed in stereo supported more accurate color
identification than in the monocular condition (Fig. 13). These
findings support the observations about S5 in §7.1: binocular
depth cues provided by stereo viewing may improve overall color
identification in surface visualization. Further study is needed to
verify the magnitude of this effect.

7.3 How do added shape cues affect performance? (S6)

Sections 7.1 and 7.2 together indicate a correlation between depth
cues and performance on our color matching task. However,
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techniques like directional lighting also improve perceptions of
surface shape. To reason about how shape perceptions might
influence performance, we also measured performance for ambient
occlusion surfaces with suggestive contours. Suggestive contours
[66] are used to in surface visualization to enhance representations
of surface shape. Contours use lines instead of shading to empha-
size high-level depth discontinuities along the surface, creating an
image resembling a hand-drawn sketch. In previous studies [45],
adding contours to a shaded surface inhibited shadow perceptions.
Given the importance of shadow perception for constancy effects,
as suggested by S3 (§5.3), contours may consequentially inhibit
participants’ abilities to accurately map surface colors to their
corresponding original key color.

Methods: Two sets of stimuli were generated: one consisting
of visualizations using ambient occlusion and a corresponding set
using ambient occlusion plus suggestive contours. Contours were
generated using the implementation provided by DeCarlo et al.
in the TriMesh package [66] and layered on top of the original
ambient occlusion surface. The procedure was otherwise identical
to the previous experiments (§4).

Data was collected from 55 participants from Mechanical
Turk. One participant was excluded for poor performance on
validation questions, resulting in 27 participants per condition.

Results: We ran a three-way ANCOVA (contours, shadow, and
ramp) on the difference between the key and response colors. We
found a significant main effect of shadow F(1,278) = 57.0108,
p < .0001). Adding contours marginally decreased performance
over ambient occlusion alone (F(1,278) = 2.7329, p = .0986, Fig.
14). The marginal decrease in performance points to a potential
trade-off between shape and color identification performance for
non-photorealistic rendering techniques in surface visualization.
Combined with previous results [45], this provides further evi-
dence that accurate shadow perceptions improve the interpretation
of color-coded data on visualized surfaces.

8 DISCUSSION AND DESIGN IMPLICATIONS

In surface visualization, viewers explore data in the context of
surface structure. Surface structure is commonly conveyed through
shadows and shading, which may obscure information encoded
on the surface. Supporting lightness constancy in visualization
can improve how well a visualization supports accurately reading
encoded data in shadow. Our results, summarized in Table 1,
demonstrate that despite several approximations made in surface
visualizations rendered using ambient occlusion, viewers are able
to interpret color-coded data along these surfaces. Performance
for this task is directly influenced by visualization design. S1
through S3 isolate constancy effects and suggest that the visual
system leverages information about synthetic shadows to disen-
tangle encoded data from surface features, and S4 suggests that
these effects are sufficient to preserve performance gains from
luminance variation for common color mappings. S5 and S6
inform how visualization design can influence color identification
performance.

Visualization techniques generally represent trade-offs: they
often improve performance for certain types of task at the ex-
pense of others. Surface visualizations have traditionally been
concerned with supporting depth percepts to convey structure and
color percepts to convey additional data about that structure. Our
findings suggest that improving percepts of depth and of color

may go hand-in-hand: techniques that enhance the apparent depth
of a visualized surface may also improve how effectively the
visualization communicates encoded data. Designers can leverage
this correlation to develop visualizations that effectively convey
surface data in context. Supplementing ambient occlusion with
other visualization techniques that enhance depth perceptions,
such as directional lighting or stereo viewing, may improve how
effectively viewers can interpret information encoded using color
on a surface.

This coordination between depth and color may be part of
a delicate balance. The visual system appears to be sensitive
to the methods used to communicate surface structure. S3 and
S6 collectively suggest that some design choices can hinder
perceptions of surface colors. The visual system likely processes
shadows generated by ambient occlusion as more than simply
surface shading. Small variations that damage the physical basis of
these shadows can significantly diminish viewers’ abilities to cor-
rectly interpret color encodings. Further, that contours marginally
degraded constancy effects suggests that simply enhancing the per-
ception of surface shape is not enough to improve this ability. Such
design decisions may represent a trade-off between perceptions of
encoded data and of surface structure and could be used to inform
task-driven design.

We anticipate that these findings will generalize to other
types of surfaces beyond solvent-excluded molecular surfaces.
While molecular surfaces represent a realistic use case where
correctly inferring data in shadowed regions is often important,
these surfaces are unfamiliar complex visual structures to our non-
expert participants. The tested surfaces in the context of these
studies therefore simply represent smooth, amorphous structures.
As constancy effects are influenced by object familiarity [67], we
would anticipate that for naı̈ve observers our results provide a
baseline measure for color identification performance in ambient
occlusion surface visualization more generally. Although these
structures do not represent all possible surface structures (they
are continuous and have no sharp corners), we believe that our
results generalize to surfaces beyond solvent-excluded molecular
surfaces but recognize that verifying this is important future work.

9 LIMITATIONS AND FUTURE WORK

Our work represents initial steps in understanding how visu-
alization design can support viewers in accurately interpreting
color encodings for effective surface visualization. We focus on
measuring performance across a small set of common design
decisions for molecular surface visualization. Exploring other
aspects of design could provide a deeper understanding of how
to better support color encodings and other percepts in surface
visualization, such as exploring effects of interaction, ramp design,
or other shadow approximations like depth darkening. Comparison
to more rigorous global illumination models could help illuminate
how approximations made by ambient occlusion influence surface
perception. Generalizing these explorations across additional sur-
faces (e.g. space-filling models) or to surfaces in other domains
(e.g. aerodynamics) would create a more general understanding of
constancy in order to inform effective surface visualization design.

One notable trade-off of this work is that we measured percep-
tions for lay participants with no known shape priors for the tested
molecular surfaces. While this lack of experience may improve the
generalizability of these findings to other domains, experienced
biochemists may perform differently—their prior knowledge of



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

Study
S1
S2
S3
S4
S5

S6

Viewers can read shadowed colors on ambient occlusion surfaces
Structure helps viewers interpret shadowed colors
Precise shadow information supports accurate color interpretation
Luminance cues improve performance for common ramps
Visualization techniques that improve depth perception enable 
viewers to more accurately identify shadowed colors
Visualization techniques that improve shape perception may not 
improve performance

Conclusion

TABLE 1: Summary of Results

the surfaces may aid them in disambiguating shape and color. In
practice, we observe that experienced biochemists prefer using
high-quality visualizations where they rely on perception rather
than their own prior experiences to understand their data in
context. Crowdsourcing allows us to remove potential confounds
from shape priors. It also allows us to measure effects across a
sampling of different viewing conditions to consider constancy
in the noise of everyday viewing. We can not guarantee that our
results are not biased by this sampling, but hope that our results
are instead sufficiently robust—our results are consistent across
both crowdsourced and in-person studies.

The task used in these studies was somewhat artificial by
necessity. While identifying color values on a surface is a stan-
dard visualization task, each image in our experiments had only
one colored patch. This removes potential complications due to
contrast between patches or judgments from comparing multiple
surface patches, both of which are possible in standard scenarios
but would interfere with our ability to measure color identification
performance as a function of visualization design. Future explo-
rations might consider more complex visualizations and tasks.

10 CONCLUSION

Color is an effective and commonly used cue for visualizing data
on surfaces. However, visualization techniques that communicate
surface shape often do so using surface shading. This shading
can confound data encoded using color, as colors are darkened
by shadows. Lightness constancy provides a perceptual mecha-
nism for bridging this complication, allowing viewers to interpret
shadowed colors in the real world. Its effectiveness in complex
synthetic environments such as surface visualizations is not well
understood. In this paper, we confirmed the existence of lightness
constancy for molecular surfaces rendered using ambient occlu-
sion and present an initial exploration of how visualization design
can impact the effectiveness of color encodings on these surfaces.
These studies offer initial insight into how a consideration of con-
stancy mechanisms can help guide effective visualization design.
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